当前位置: 首页 > news >正文

专业的深圳电商app开发专业网站优化培训

专业的深圳电商app开发,专业网站优化培训,网站建设推广哪家专业,360建筑网一级消防(用于复习) 目录 树概念及结构 名词概念 二叉树概念及结构 特殊的二叉树 满二叉树 完全二叉树 运算性质 二叉树存储结构 顺序存储 链式存储 堆 - 顺序存储 堆的性质 堆的实现 堆的应用 堆排序 直接建堆法 树概念及结构 概念&#xff1a…

(用于复习)

目录

树概念及结构

名词概念

二叉树概念及结构

特殊的二叉树

满二叉树

完全二叉树

运算性质

二叉树存储结构

顺序存储

链式存储

堆 - 顺序存储

堆的性质

堆的实现

堆的应用

堆排序

直接建堆法


树概念及结构

        概念非线性的数据结构(形成的倒挂似树的结构 - 根朝上,叶朝下,子树之间不能有交集)。

名词概念

  • 节点的度一个节点含有的子树的个数称为该节点的度。
  • 叶节点或终端节点:度为0的节点称为叶节点。
  • 非终端节点或分支节点:度不为0的节点。
  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点。
  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点。
  • 兄弟节点:具有相同父节点的节点互称为兄弟节点。
  • 树的度一棵树中,最大的节点的度称为树的度。
  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推。
  • 树的高度或深度树中节点的最大层次。
  • 堂兄弟节点:双亲在同一层的节点互为堂兄弟。
  • 节点的祖先:从根到该节点所经分支上的所有节点。
  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
  • 森林:由m(m>0)棵互不相交的树的集合称为森林。

二叉树概念及结构

        由一个根节点加上两棵别称为左子树和右子树的二叉树组成 - 子树可为空。

  • 不存在度大于2的结点。

特殊的二叉树

满二叉树

        每一个层的结点数都达到最大值,则结点总数:2^k - 1(K层数)

完全二叉树

        特殊的完全二叉树 - 最后一层不满,但是是左到右是连续的

        (满二叉树是特殊的完全二叉树)

运算性质

  • 根节点的层数为1,则第i层上最多有2^(i - 1)个结点
  • 根节点的层数为1,则深度h的最大结点数是2^h - 1
  • 根节点的层数为1,n个结点的满二叉树的深度h = log2(n + 1)
  • 如果度为0其叶结点个数为n,度为2的分支结点个数为m,则有:n = m + 1
  • n个结点的完全二叉树,以数组顺序对所有节点开始编号:
  1. 若i>0,i位置节点的双亲序号:(i - 1) / 2
  2. 若2i + 1 < n,左孩子序号:2i + 1,2i + 1 >= n否则无左孩子
  3. 若2i + 2 < n,右孩子序号:2i + 2,2i + 2 >= n否则无右孩子

一个具有767个节点的完全二叉树,其叶子节点个数为()

A、383
B、384
C、385
D、386
------------------------------------------
正确答案:B
------------------------------------------
解析:
        不要只想最后一层,倒数第二层也是会有叶子节点的。
首先以:

        可以推算出是第1 ~ 9层为满二叉树,对应节点数:511。可以知道最后一层一定为叶子节点:256个。

        然后根据完全二叉树是最后一层不满,但是是左到右是连续的,于是256 / 2 = 128,所以倒数第二层有128个是最后一层的父节点。

 再根据:

        可知倒数第二层有256个节点,于是叶子节点:256 + 256 - 128 = 384。

二叉树存储结构

顺序存储

        用数组来存储,适合表示完全二叉树。

  • 物理上:数组
  • 逻辑上:二叉树

链式存储

        链表来表示一棵二叉树。

  • 二叉链:数据域和左右指针域
  • 三叉链:数据域和左右上指针域

堆 - 顺序存储

        堆是一种特殊的完全二叉树,只不过父亲与儿子节点间有关系。顺序存储的完全二叉树典型的就是堆。(普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储)

堆的性质

  • 堆中某个节点的值总是不大于或不小于其父节点的值
    • 小堆:父亲位,比孩子位,要小
    • 大堆:父亲位,比孩子位,要大
  • 堆总是一棵完全二叉树

堆的实现

#include <iostream>
#include <cassert>namespace qcr_heap
{typedef int HeapType;struct Heap{int64_t _capacity; // 动态开辟可用大小int64_t _size;     // 实际数据占用大小HeapType *_array;  // 动态开辟一维数组};/********** 初始化堆*********/void HeapInit(Heap *heap){assert(heap);heap->_capacity = 0;heap->_size = 0;heap->_array = 0;}/********** 销毁堆*********/void HeapDestory(Heap *heap){assert(heap);heap->_capacity = 0;heap->_size = 0;free(heap->_array);heap->_array = nullptr;}/********** 小根堆*********/bool less(HeapType element_1, HeapType element_2){return element_1 < element_2;}/********** 大根堆*********/bool greater(HeapType element_1, HeapType element_2){return element_1 > element_2;}/********** 交换数据*********/void swap(HeapType *element_1, HeapType *element_2){HeapType tmp = *element_1;*element_1 = *element_2;*element_2 = tmp;}/****************************** 向上调整*   heap: 输入型参数,堆地址*   child: 输入型参数,排序的插入节点*   Func: 输入型参数,大小堆*****************************/void AdjustUp(Heap *heap, int64_t child, bool (*Func)(HeapType, HeapType)){assert(heap);int64_t parent = (child - 1) / 2;while (child > 0){if (Func(heap->_array[child], heap->_array[parent])){swap(&(heap->_array[child]), &(heap->_array[parent]));child = parent;parent = (child - 1) / 2;}elsebreak;}}/****************************** 向下调整*   heap: 输入型参数,堆地址*   root: 输入型参数,排序的根节点*   Func: 输入型参数,大小堆*****************************/void AdjustDown(Heap *heap, int64_t root, bool (*Func)(HeapType, HeapType)){assert(heap);int64_t parent = root;int64_t child = parent * 2 + 1;while (child < heap->_size){if (child + 1 < heap->_size && Func(heap->_array[child + 1], heap->_array[child])){child++;}if (Func(heap->_array[child], heap->_array[parent])){swap(&(heap->_array[child]), &(heap->_array[parent]));parent = child;child = parent * 2 + 1;}else{break; // 符合堆就成立了,就没必要进行交换了。}}}/****************************** 存入数据*   heap: 输入型参数,堆地址*   data: 输入型参数,插入的数据*   Func: 输入型参数,大小堆*****************************/void HeapPush(Heap *heap, HeapType data, bool (*Func)(HeapType, HeapType)){assert(heap);if (heap->_capacity == heap->_size){int64_t newcapacity = heap->_capacity == 0 ? 5 : heap->_capacity * 2;HeapType * tmp = (HeapType *)realloc(heap->_array, heap->_capacity*sizeof(HeapType);if (tmp == nullptr){printf("Capacuty Get Error!\n");exit(-1);}heap->_array = tmp;heap->_capacity = newcapacity;}heap->_array[heap->_size] = data;AdjustUp(heap, heap->_size, Func);(heap->_size)++;}/****************************** 按顺序全部输出*   heap: 输入型参数,堆地址*****************************/void HeapPrint(Heap *heap){assert(heap);for (uint64_t i = 0; i < heap->_size; i++){std::cout << heap->_array[i] << " ";}std::cout << '\n';}/****************************** 首元素*   heap: 输入型参数,堆地址*****************************/HeapType HeapTop(Heap *heap){assert(heap);assert(heap->_size > 0);return heap->_array[0];}/****************************** 判空*   heap: 输入型参数,堆地址*****************************/bool HeapEmpty(Heap *heap){assert(heap);return heap->_size == 0;}/****************************** 有效数据个数*   heap: 输入型参数,堆地址*****************************/int HeapSize(Heap *heap){assert(heap);return heap->_size;}/****************************** 判空*   heap: 输入型参数,堆地址*   Func: 输入型参数,大小堆*****************************/void HeapPop(Heap *heap, bool (*Func)(HeapType, HeapType)){assert(heap);assert(heap->_size > 0);heap->_array[0] = heap->_array[heap->_size - 1];(heap->_size)--;AdjustDown(heap, 0, Func);}
}
已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次数是()
A、1
B、2
C、3
D、4
------------------------------------------
正确答案:B
------------------------------------------
解析:
        首先我们需要知道,删除对应的调整算法是向下调整,所以其实在比较中有一个很重要的一项就是左右节点的比较,于是此处本质上的比较是需要在加上一次左右节点的比较。

堆的应用

堆排序

        利用堆删除思想来进行排序。

TOP-K问题

1. 用数据集合中前K个元素来建堆

  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
面试题 17.14. 最小K个数 - 力扣(LeetCode)

class Solution
{
public:// 向上建堆void adjustUp(vector<int> &nums, int child){int parent = (child - 1) / 2;while (child > 0){if (nums[child] > nums[parent]){swap(nums[child], nums[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}}// 向下建堆void adjustDown(vector<int> &nums, int parent){int child = parent * 2 + 1;while (child < nums.size()){if (child + 1 < nums.size() && nums[child + 1] > nums[child]){child++;}if (nums[child] > nums[parent]){swap(nums[child], nums[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}// 堆排序的TOP-k问题vector<int> smallestK(vector<int> &arr, int k){vector<int> nums;nums.reserve(k);// 前K个元素来建堆for (int i = 0; i < k; i++){nums.push_back(arr[i]);adjustUp(nums, nums.size() - 1);}// 对比堆顶元素if (k != 0){for (int i = k; i < arr.size(); i++){if (arr[i] < nums[0]){nums[0] = arr[i];adjustDown(nums, 0);}}}return nums;}
};

        并不是最优的,并且还实现了两个堆算法,编码效率过低。

直接建堆法

        原本利用向上建堆的方式,是并不够完美的,建堆的时间复杂度为O(N)。

        而直接建堆法时间复杂度O(logn),其根本是利用向下建堆实现。

for (int i = (size - 1 - 1) / 2; i >= 0; i--)
{ADjustDown(nums, i);
}
class Solution
{
public:// 向下建堆void adjustDown(vector<int> &nums, int parent){int child = parent * 2 + 1;while (child < nums.size()){if (child + 1 < nums.size() && nums[child + 1] > nums[child]){child++;}if (nums[child] > nums[parent]){swap(nums[child], nums[parent]);parent = child;child = parent * 2 + 1;}else{break;}}}// 堆排序的TOP-k问题vector<int> smallestK(vector<int> &arr, int k){vector<int> nums;nums.reserve(k);// 前K个元素来建堆for (int i = 0; i < k; i++){nums.push_back(arr[i]);}for(int i = (k - 1 - 1) / 2; i >= 0; i--){adjustDown(nums, i);}// 对比堆顶元素if (k != 0){for (int i = k; i < arr.size(); i++){if (arr[i] < nums[0]){nums[0] = arr[i];adjustDown(nums, 0);}}}return nums;}
};
http://www.hrbkazy.com/news/48408.html

相关文章:

  • 自己建立网站怎么建优化官网咨询
  • 河南手机网站建设应用商店aso优化
  • 长沙网上商城网站建设方案软文代写平台有哪些
  • 阿里巴巴做网站接单几率宁波seo教程
  • 直播网站开发方案ppt谷歌seo关键词排名优化
  • 网站视频插件代码客户管理系统
  • v9网站模板百度关键字搜索排名
  • 兰州广告公司网站建设seo推广沧州公司电话
  • 朝阳区规划网站seo是什么意思的缩写
  • 网站的动效怎么做的市场营销手段有哪四种
  • 建筑设计找工作的网站网络营销服务的特点有哪些
  • 网页设计素材螺蛳粉图网站怎么做优化排名
  • 那些网站可以做问答全搜网
  • java代做网站seo网站推广批发
  • 重庆网站建设推广公司哪家好百度认证服务平台
  • 网站后台账号密码忘记了太原seo外包平台
  • 宣传片拍摄手法及技巧抖音搜索排名优化
  • 可以做任务的网站有哪些内容大数据查询官网
  • 张家界做网站百度搜索推广收费标准
  • vs网站开发教程成人电脑基础培训班
  • 如何做网站授权网站建设情况
  • 外贸公司用什么建网站什么是seo关键词优化
  • 网站备案容易吗合肥seo外包平台
  • 网站建设意向书学生个人网页设计模板
  • 做网站 绑定域名长春最专业的seo公司
  • 上海做网站公空间刷赞网站推广
  • 网站在线客服聊天系统2024年重启核酸
  • 信息查询类网站是怎么做的推广方法有哪几种
  • 厦门 外贸商城网站建设云计算培训费用多少钱
  • 具有价值的做pc端网站辽阳网站seo