当前位置: 首页 > news >正文

多个网站做计划seo排名点击手机

多个网站做计划,seo排名点击手机,新疆免费网站建设,如何做向日葵官方网站目录 一,系统及离散时间系统 二,离散时间系统中的线性时不变系统 1,线性系统 1) 可加性 2) 比例性(齐次性) 3)叠加原理(叠加性质) 2,时不变系统(移不变系统) 通过前几篇文章的学习,此时我对序列的相关概…

目录

一,系统及离散时间系统 

 二,离散时间系统中的线性时不变系统

1,线性系统

 1) 可加性

 2) 比例性(齐次性)

3)叠加原理(叠加性质)

 2,时不变系统(移不变系统)


通过前几篇文章的学习,此时我对序列的相关概念和运算已经有所掌握,接下来我将开始学习新的概念“离散时间系统中的线性时不变系统”,

一,系统及离散时间系统 

首先需要知道系统的概念,在《信号与系统》中,系统是一个具有特定功能的整体,由相互关联的事物组合而成。

由于需要处理的信号基本是离散时间信号(既序列),因此,在这篇文章中我着重学习用于处理序列的离散时间系统。

离散时间系统是指其输入和输出信号都是离散的时间序列。

离散时间系统可以将输入序列 x(n) 变换成输出序列 y(n) ,因此可以用  T\left [ \cdot \right ] 表示这种系统,其中:

  1. T :transform 变换,输入序列 x(n) 变换成输出序列 y(n) 。
  2. 中间的点号  \cdot  用来表示输入的序列
  3. 例如:“将输入序列 x(n) 变换成输出序列 y(n)”就可以用  y(n)=T\left [ x(n) \right ]  表示。
    输出序列一般 用 英文字母 y 指代,y 是 yield  的缩写,yield 有产出,产生,产量的意思。
  4. 不同的离散时间系统会对 输入序列 x(n) 做不同的操作,例如,只在输入信号x(n)前面乘上系数n 的离散时间系统 :y(n)=T\left [ x(n) \right ]=nx(n),或者是将输入信号x(n)取平方的离散时间系统:y(n)=T\left [ x(n) \right ]=x^{2}(n)

需要注意的是:“将输入序列 x(n) 变换成输出序列 y(n)” 这是一种运算,因此,离散时间系统就是一种运算。可以用下图表示:

 二,离散时间系统中的线性时不变系统

 线性时不变系统由两部分组成:线性系统+时不变系统。

先学习线性系统。

1,线性系统

 首先需要知道什么是线性,在大学里面会有《高等数学》课,涉及到线性齐次(或非齐次)微分方程,还有《线性代数》课,可以看到,熟知线性的概念很重要。

线性:就是具有线的特性,而这个线就是直线,在列直线方程时都是使用一次方程,因此,“线性” 跟“一次”挂钩,在运算时,所涉及到的变量都必须是一次项,如果有二次及以上次数的项出现,那么就是非线性。

在《数字信号处理》中,“线性” 一词出现在 “线性系统” 中,当一个系统满足叠加原理(或叠加性质),就是一个线性系统。

线性系统的叠加原理包括比例性和可加性这两个特性。

 假设有两个不同的输入序列 x_{1}(n)  和  x_{2}(n)  分别作用于 离散时间系统  T\left [ \cdot \right ] ,得到离散时间系统 T\left [ \cdot \right ] 分别 对这两个输入序列的响应 序列 T\left [ x_{1}(n) \right ]  和  T\left [ x_{2}(n) \right ],令y_{1}(n)=T\left [ x_{1}(n) \right ],y_{2}(n)=T\left [ x_{2}(n) \right ] 

 1) 可加性

将两个响应序列相加:T\left [ x_{1}(n) \right ]+T\left [ x_{2}(n) \right ]=y_{1}(n)+y_{2}(n)

 现在,让这两个不同的序列 x_{1}(n)  和  x_{2}(n)  同时作用于离散时间系统  T\left [ \cdot \right ] ,得到离散时间系统 T\left [ \cdot \right ]  同时对这两个输入序列的响应序列  T\left [ x_{1}(n)+ x_{2}(n)\right ] ,令

T\left [ x_{1}(n)+ x_{2}(n)\right ]=y(n)

两个不同的输入序列 x_{1}(n)  和  x_{2}(n) ,不管是分别作用于 离散时间系统  T\left [ \cdot \right ] 还是同时作用于 离散时间系统  T\left [ \cdot \right ] ,相加后的响应序列相等,则这个系统满足可加性:   T\left [ x_{1}(n)+ x_{2}(n)\right ]=y(n)=y_{1}(n)+y_{2}(n)

 2) 比例性(齐次性)

 将两个不同的输入序列 x_{1}(n)  和  x_{2}(n) 分别乘上不同系数 a_{1},a_{2} 并作用于离散时间系统T\left [ \cdot \right ] 

如果得到的响应序列满足  T\left [ a_{1}x_{1}(n)\right ]=a_{1}y_{1}(n),T\left [ a_{2}x_{2}(n)\right ]=a_{2}y_{2}(n) ,则这个系统满足比例性(齐次性)

3)叠加原理(叠加性质)

将系统满足 可加性 及 比例性 的公式合二为一,得到线性系统满足叠加原理的公式,如下👇 

T\left [ a_{1}x_{1}(n)+ a_{2}x_{2}(n)\right ]=a_{1}y_{1}(n)+a_{2}y_{2}(n)

上面的公式是以两个输入序列为例,列出的公式,但是对于一个线性系统来说,可以有两个及两个以上的输入序列作用于该线性系统,假设有N个输入序列作用于线性系统,则响应的也会有N个响应序列输出,公式可以写成如下形式:

T\left [ \sum_{i=1}^{N}a_{i}x_{i}(n) \right ]= \sum_{i=1}^{N}a_{i}y_{i}(n)

 线性系统肯定满足:“零输入产生零输出”(当输入序列x(n)的序列值全为0时,0乘任何数都为0,并且,多个0相加的结果也是0,所以响应序列y(n)的序列值也全为0)

 知道了线性系统的相关概念,我现在可以开始理论和实践相结合,做一道题:

 由题目可以看到,输入序列x(n)作用于的离散时间系统T\left [ \cdot \right ],是先将输入序列 x(n) 乘上系数2,接着将序列 2x(n) 上移5个时间单位,最后得到响应序列y(n)

需要注意的是,在做题的过程中,要一直牢记:离散时间系统是对 输入序列 x(n) 的响应

 个人解:先运用可加性的公式判断该系统是否满足可加性

T\left [ x_{1}(n) \right ]=2x_{1}(n)+5=y_{1}(n)

T\left [ x_{2}(n) \right ]=2x_{2}(n)+5=y_{2}(n) 

 T\left [ x_{1}(n)+x_{2}(n) \right ]=2(x_{1}(n)+x_{2}(n))+5=2x_{1}(n)+2x_{2}(n)+5=y_{3}(n)

由于y_{1}(n)+y_{2}(n)=2x_{1}(n)+2x_{2}(n)+10,而 y_{3}(n)=2x_{1}(n)+2x_{2}(n)+5

 所以y_{1}(n)+y_{2}(n)\neq y_{3}(n),因此该系统不满足可加性,不是线性系统,是非线性系统。

书上解:

 2,时不变系统(移不变系统)

时不变系统是指,无论输入序列x(n)在时间上何时作用于离散时间系统 T[\cdot ],系统的响应 y(n) 仅与输入信号x(n)的形状和时间延迟有关,而与输入信号x(n)的实际时间无关。换句话说,如果输入信号 x(n)的时间延迟了n_{0}​ 个单位时间,则系统的输出  y(n)也会相应地延迟n_{0}个单位时间,即 y(n)=T\left [x(n-m) \right ]=y(n-m)。 

 如果一个系统的输入输出满足式 T\left [x(n-m) \right ]=y(n-m),那么它就是一个时不变系统。

 开始上题👇

 解:让乘了系数 n 的输入序列 x(n) 作用于延时m个单位时间的离散时间系统,即T\left [ x(n-m) \right ]=nx(n-m)

接着也让响应序列 y(n) 延时m个单位时间,得到 y(n-m)=(n-m)x(n-m)

可以看到,T\left [x(n-m) \right ]\neq y(n-m),因此该系统是时变系统。

书上的解答:

 如果一个系统既是线性系统,又是时不变系统,那么就可以称这个系统为线性时不变系统(LTI:linear  线性的  time 时间的  invariable不变的)

有问题请在评论区留言或者是私信我,回复时间不超过一天。 

http://www.hrbkazy.com/news/11526.html

相关文章:

  • 响应式网站设计尺寸seo技术培训教程
  • 诸暨网站制作公司 网页百度seo推广优化
  • asp.net网站开发百科微信scrm系统
  • wordpress 主题打包如何网站seo
  • 最好的购物平台排行榜seo企业建站系统
  • 做羞羞的网站重庆seo网络推广关键词
  • 新手学做网站要多久网站排名优化方法
  • 郑州做网站擎天网站建设价格
  • 湖北做网站网络运营推广合作
  • 东莞娱乐场所开放通知刷seo关键词排名软件
  • 怎样做好网站运营企业网站建设公司
  • 王也图片seo标题优化关键词怎么选
  • wordpress在线搭建西安百度首页优化
  • 网站建设协议书如何自己开发一个平台
  • 信息网站建设费使用年限百度top排行榜
  • 手机做任务赚钱的网站河南优化网站
  • 商城网站建设报价单毛戈平化妆培训学校官网
  • 免费个人网站模板下载重庆百度推广排名
  • 备案个人网站名称大全搜索引擎哪个好用
  • 网站网址注册磁力蜘蛛种子搜索
  • 我们一起做网站百度竞价广告推广
  • 做网站需要多少兆专线seo sem
  • 从零开始网站建设网站关键字优化
  • 自己做港澳台照片回执网站百度推广公司
  • 传单设计网站seo优化名词解释
  • 视频网站开发与制作免费网站服务器
  • 金华市住房建设局网站广告推广的软件
  • 扫描网站特征dede软文世界
  • 做精美ppt的网站黑帽seo技术有哪些
  • java可以做网站吗产品推广营销方案