当前位置: 首页 > news >正文

丰县网站建设汽车seo是什么意思

丰县网站建设,汽车seo是什么意思,自己怎么设计网页,别人做的网站目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 本代码说明了“最小二乘支持向量机”在学习偏微分方程 (PDE) 解方面的应用。提供了一个示例&#xff0c…

       目录

💥1 概述

📚2 运行结果

🎉3 参考文献

👨‍💻4 Matlab代码


💥1 概述

本代码说明了“最小二乘支持向量机”在学习偏微分方程 (PDE) 解方面的应用。提供了一个示例,并将获得的结果与精确的解决方案进行比较。

📚2 运行结果

主函数部分代码:

clc; clear all; close all

warning('off','all')

a0=0;

b0=1;

n=11;

h=(b0-a0)/n;

[X1,Y1]=meshgrid(a0+h:h:b0-h);

W=[];

for i=1:size(X1,2)

    Z=[X1(:,i),Y1(:,1)];

    W=[W ; Z];

end

subplot(2,3,1)

plot(W(:,1),W(:,2),'o')

hold on

[X,Y]=meshgrid(a0:h:b0);

W2=[];

for i=1:size(X,2)

    Z=[X(:,i),Y(:,1)];

    W2=[W2 ; Z];

end

L1=[];

for i=1:n+1

    L1=[L1 ; W2(i,:)];

end

L2=[];

for i=n*(n+1)+1:size(W2,1)

    L2=[L2 ; W2(i,:)];

end

L3=[L1(:,2) L1(:,1)];

L4=[L2(:,2) L2(:,1)];

plot(L1(:,1),L1(:,2),'s')

plot(L2(:,1),L2(:,2),'o')

plot(L3(:,1),L3(:,2),'p')

plot(L4(:,1),L4(:,2),'+')

title('Training points','Fontsize',14)

xlabel('x')

ylabel('y')

%% 

f=@(s,v) exp(-s).*(s-2+v.^3+6*v); % right hand side of the given PDE

gamma=10^14; % the regularization parameter

sig=0.95;  % kernel bandwidth

K=KernelMatrix(W,'RBF_kernel',sig);

x=W(:,1);

y=W(:,2);

xx1=x*ones(1,size(x,1));

xx2=x*ones(1,size(x,1));

cof1=2*(xx1-xx2')/(sig);

xx3=y*ones(1,size(y,1));

xx4=y*ones(1,size(y,1));

cof2=2*(xx3-xx4')/(sig);

Kxx=(-2/sig)*K + (cof1.^2) .* K;

Kyy=(-2/sig)*K + (cof2.^2) .* K;

Kx2x2=(   ( 12/(sig^2) - (12/sig)* (cof1.^2) +  (cof1.^4) ) .*K);

Ky2y2=(   ( 12/(sig^2) - (12/sig)* (cof2.^2) +  (cof2.^4) ) .*K);

Kx2y2=(   ( 4/(sig^2) - (2/sig)* (cof1.^2) - (2/sig)* (cof2.^2)  +  (cof1.^2).*(cof2.^2)  ) .*K);

Ky2x2=(   ( 4/(sig^2) - (2/sig)* (cof1.^2) - (2/sig)* (cof2.^2)  +  (cof1.^2).*(cof2.^2)  ) .*K);

K1T= Kx2x2+ Kx2y2 + Ky2x2+ Ky2y2;

m=size(K1T,1);

%*******************************************************************

KL1=KernelMatrix(W,'RBF_kernel',sig,L1);

L1b1x=L1(:,1)*ones(1,size(x,1));

L1b2x=x*ones(1,size(L1(:,1),1));

cofL1x=-2*(L1b1x'-L1b2x)/(sig);

L1b1y=L1(:,2)*ones(1,size(y,1));

L1b2y=y*ones(1,size(L1(:,2),1));

cofL1y=-2*(L1b1y'-L1b2y)/(sig);

KL1xx=(-2/sig)*KL1 + (cofL1x.^2) .* KL1;

KL1yy=(-2/sig)*KL1 + (cofL1y.^2) .* KL1;

KL1T= KL1xx+ KL1yy;

%*************************************************

KL2=KernelMatrix(W,'RBF_kernel',sig,L2);

L2b1x=L2(:,1)*ones(1,size(x,1));

L2b2x=x*ones(1,size(L2(:,1),1));

cofL2x=-2*(L2b1x'-L2b2x)/(sig);

L2b1y=L2(:,2)*ones(1,size(y,1));

L2b2y=y*ones(1,size(L2(:,2),1));

cofL2y=-2*(L2b1y'-L2b2y)/(sig);

KL2xx=(-2/sig)*KL2 + (cofL2x.^2) .* KL2;

KL2yy=(-2/sig)*KL2 + (cofL2y.^2) .* KL2;

KL2T= KL2xx+ KL2yy;

%*************************************************

KL3=KernelMatrix(W,'RBF_kernel',sig,L3);

L3b1x=L3(:,1)*ones(1,size(x,1));

L3b2x=x*ones(1,size(L3(:,1),1));

cofL3x=-2*(L3b1x'-L3b2x)/(sig);

L3b1y=L3(:,2)*ones(1,size(y,1));

L3b2y=y*ones(1,size(L3(:,2),1));

cofL3y=-2*(L3b1y'-L3b2y)/(sig);

KL3xx=(-2/sig)*KL3 + (cofL3x.^2) .* KL3;

KL3yy=(-2/sig)*KL3 + (cofL3y.^2) .* KL3;

KL3T= KL3xx+ KL3yy;

%*************************************************

KL4=KernelMatrix(W,'RBF_kernel',sig,L4);

L4b1x=L4(:,1)*ones(1,size(x,1));

L4b2x=x*ones(1,size(L4(:,1),1));

cofL4x=-2*(L4b1x'-L4b2x)/(sig);

L4b1y=L4(:,2)*ones(1,size(y,1));

L4b2y=y*ones(1,size(L4(:,2),1));

cofL4y=-2*(L4b1y'-L4b2y)/(sig);

KL4xx=(-2/sig)*KL4 + (cofL4x.^2) .* KL4;

KL4yy=(-2/sig)*KL4 + (cofL4y.^2) .* KL4;

KL4T= KL4xx+ KL4yy;

%*************************************************

KL1L1=KernelMatrix(L1,'RBF_kernel',sig,L1);

KL2L1=KernelMatrix(L2,'RBF_kernel',sig,L1);

KL3L1=KernelMatrix(L3,'RBF_kernel',sig,L1);

KL4L1=KernelMatrix(L4,'RBF_kernel',sig,L1);

%*************************************************

KL1L2=KernelMatrix(L1,'RBF_kernel',sig,L2);

KL2L2=KernelMatrix(L2,'RBF_kernel',sig,L2);

KL3L2=KernelMatrix(L3,'RBF_kernel',sig,L2);

KL4L2=KernelMatrix(L4,'RBF_kernel',sig,L2);

%************************************************

KL1L3=KernelMatrix(L1,'RBF_kernel',sig,L3);

KL2L3=KernelMatrix(L2,'RBF_kernel',sig,L3);

KL3L3=KernelMatrix(L3,'RBF_kernel',sig,L3);

KL4L3=KernelMatrix(L4,'RBF_kernel',sig,L3);

%************************************************

KL1L4=KernelMatrix(L1,'RBF_kernel',sig,L4);

KL2L4=KernelMatrix(L2,'RBF_kernel',sig,L4);

KL3L4=KernelMatrix(L3,'RBF_kernel',sig,L4);

KL4L4=KernelMatrix(L4,'RBF_kernel',sig,L4);

%************************************************

A= [K1T+1/gamma*eye(m) , KL1T , KL2T, KL3T , KL4T , zeros((n-1)^2,1) ;....

    KL1T' , KL1L1' , KL2L1' , KL3L1' , KL4L1' , ones(n+1,1) ;...

    KL2T' , KL1L2' , KL2L2' , KL3L2' , KL4L2' , ones(n+1,1) ;...

    KL3T' , KL1L3' , KL2L3' , KL3L3' , KL4L3' , ones(n+1,1) ;...

    KL4T' , KL1L4' , KL2L4' , KL3L4' , KL4L4' , ones(n+1,1) ;...

    zeros((n-1)^2,1)' , ones(n+1,1)' , ones(n+1,1)' , ones(n+1,1)' , ones(n+1,1)' , 0 ];

B=[f(W(:,1),W(:,2)); L1(:,2).^3 ; (1+L2(:,2).^3)*exp(-1)  ;  L3(:,1).*exp(-L3(:,1)) ; exp(-L4(:,1)).*(L4(:,1)+1) ; 0 ];

result=A\B;

alpha=result(1:m);

beta1=result(m+1:m+n+1);

beta2=result(m+n+2:m+2*n+2);

beta3=result(m+2*n+3:m+3*n+3);

beta4=result(m+3*n+4:m+4*n+4);

b=result(end);

%% Result for training points

yhat= (Kxx' + Kyy')* alpha + KL1 * beta1 + KL2* beta2 + KL3* beta3 + KL4* beta4 +b;

yexa=@(p,q) exp(-p).*(p+q.^3);

yexact=yexa(W(:,1),W(:,2));

Error1= yexact- yhat;

MAX_Absolute_error_training=max(abs(yhat-yexact));

RMSE_training=sqrt(mse(yhat-yexact));

fprintf('-------  training set ------------------\n\n')

fprintf('Max Abs Error on training set=%d\n',MAX_Absolute_error_training)

fprintf('RMSE on training set=%d\n\n',RMSE_training)

subplot(2,3,2)

plot3(W(:,1),W(:,2),yhat,'pr')

hold all

plot3(W(:,1),W(:,2),yexact,'sb')

title('Approximate and exact solution for training points','Fontsize',14)

xlabel('x')

ylabel('y')

zlabel('u')

NError=reshape(Error1,size(X1,1),size(Y1,1));

Xn=linspace(0,1,n-1);

Yn=linspace(0,1,n-1);

subplot(2,3,3)

surface(Xn,Yn,NError)

shading interp

xlabel('y','Fontsize',14)

ylabel('x','Fontsize',14)

set(gca,'Fontsize',20)

grid on

h=colorbar;

set(h,'fontsize',14);

title('Absolute errors for training set','Fontsize',14)

%% Result for test points

a0=0;

b0=1;

n=31;

h=(b0-a0)/n;

[X2,Y2]=meshgrid(a0+h:h:b0-h);

WT=[];

for i=1:size(X2,2)

    Z=[X2(:,i),Y2(:,1)];

    WT=[WT ; Z];

end

subplot(2,3,4)

plot(WT(:,1),WT(:,2),'o')

title('Test points','Fontsize',14)

xlabel('x')

ylabel('y')

Kt=KernelMatrix(W,'RBF_kernel',sig,WT);

xt=WT(:,1);

yt=WT(:,2);

xx1t=x*ones(1,size(xt,1));

xx2t=xt*ones(1,size(x,1));

cof1t=-2*(xx1t-xx2t')/(sig);

xx3t=y*ones(1,size(yt,1));

xx4t=yt*ones(1,size(y,1));

cof2t=-2*(xx3t-xx4t')/(sig);

Ktestxx=(-2/sig)*Kt + (cof1t.^2) .* Kt;

Ktestyy=(-2/sig)*Kt + (cof2t.^2) .* Kt;

KKlte1=KernelMatrix(WT,'RBF_kernel',sig,L1);

KKlte2=KernelMatrix(WT,'RBF_kernel',sig,L2);

KKlte3=KernelMatrix(WT,'RBF_kernel',sig,L3);

KKlte4=KernelMatrix(WT,'RBF_kernel',sig,L4);

Ytest= (Ktestxx' + Ktestyy')* alpha + KKlte1 * beta1 + KKlte2* beta2 + KKlte3* beta3 + KKlte4* beta4 + b;

yextest=yexa(WT(:,1),WT(:,2));

subplot(2,3,5)

plot3(WT(:,1),WT(:,2),Ytest,'pr')

hold on

plot3(WT(:,1),WT(:,2),yextest,'sb')

title('Approximate and exact solution for test points','Fontsize',14)

xlabel('x')

ylabel('y')

zlabel('u')

yextest=yexa(WT(:,1),WT(:,2));

MAX_Absolute_error_test=max(abs(Ytest-yextest));

RMSE_test=sqrt(mse(Ytest-yextest));

fprintf('-------  test set ------------------\n\n')

fprintf('Max Abs Error on test set=%d\n',MAX_Absolute_error_test)

fprintf('RMSE on test set=%d\n\n',RMSE_test)

fprintf('-------  Finished -----------------------\n\n')

Error= Ytest - yextest ;

Ytnew=reshape(Ytest,size(X2,1),size(Y2,1));

Ytexa=reshape(yextest,size(X2,1),size(Y2,1));

NError=reshape(Error,size(X2,1),size(Y2,1));

Xn=linspace(0,1,n-1);

Yn=linspace(0,1,n-1);

subplot(2,3,6)

surface(Xn,Yn,NError)

shading interp

xlabel('y','Fontsize',14)

ylabel('x','Fontsize',14)

set(gca,'Fontsize',20)

grid on

h=colorbar;

set(h,'fontsize',14);

title('Absolute errors for test set','Fontsize',14)

🎉3 参考文献

[1] Mehrkanoon S., Falck T., Suykens J.A.K., "Approximate Solutions to Ordinary Differential Equations Using Least Squares Support Vector Machines",IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, Sep. 2012, pp. 1356-1367.

[2] Mehrkanoon S., Suykens J.A.K.,"LS-SVM approximate solution to linear time varying descriptor systems", Automatica, vol. 48, no. 10, Oct. 2012, pp. 2502-2511.

[3] Mehrkanoon S., Suykens J.A.K., "Learning Solutions to Partial Differential Equations using LS-SVM",Neurocomputing, vol. 159, Mar. 2015, pp. 105-116.

👨‍💻4 Matlab代码 

http://www.hrbkazy.com/news/19580.html

相关文章:

  • 重庆设计公司网站重庆seo关键词排名
  • 静安区社会建设办公室网站长安网站优化公司
  • 沈阳企业网站模板建站自己如何注册网站
  • 长春好的做网站公司有哪些nba湖人队最新消息
  • 做移动网站排名软件北京云无限优化
  • app是什么软件首页关键词排名优化
  • 17一起做网站zwd.com关键词优化师
  • 阿里云虚拟主机网站建设免费宣传平台有哪些
  • 如何做推广链接搜狗seo刷排名软件
  • html的网站模板浙江seo推广
  • 专门做油画交流的网站百度一下你就知道了主页
  • 网站如何做才能被360收录百度一下官方网
  • 甘肃兰州天气预报15天网站优化建议
  • 深圳网站建设公司哪个搜索引擎优化的重要性
  • 网站经常被挂马网站快速优化排名app
  • html网站标签百度手机助手应用商店
  • 企业英文网站制作网站优化排名易下拉霸屏
  • 微商货源类网站源码视频号链接怎么获取
  • 平面设计赚钱网站投广告的平台有哪些
  • 建平台网站软文营销软文推广
  • 帮别人做网站 别人违法app引流推广软件
  • 安徽建设厅网站施腾讯企点客服
  • 网站内的地图导航怎么做的seo软件代理
  • 电商网站开发背景怎么写友情链接地址
  • 浙江省杭州市软装设计公司网站优化方案怎么写
  • 网络平台管理制度seo外包一共多少钱
  • java web网站开发流程小江seo
  • 揭阳网站制作机构慧聪网seo页面优化
  • php淘宝商城网站源码seo软件工具箱
  • 大连网站制作的公司哪家好天津seo选天津旗舰科技a