网站建设宝安搜索引擎优化策略不包括
题目链接:509. 斐波那契数
代码随想录
视频:手把手带你入门动态规划 | LeetCode:509.斐波那契数_哔哩哔哩_bilibili
看完代码随想录之后的想法:
我们要知道动态规划的五部曲;
1,确定dp数组的含义,下标的含义;
2,确定递推公式;
3,确定dp数组如何初始化;
4,确定遍历顺序;
5,打印dp数组(用来debug);
1这道题目dp数组是第i位斐波那契数的值,i是第i位
2,dp[i] = dp[i - 1] + dp[i - 2];
3,dp[0] = 0,dp[1] = 1;
4,从前向后遍历;
5,可以打印数组debug;
class Solution {public int fib(int n) {int[] dp = new int[31];dp[0] = 0;dp[1] = 1;for(int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}
题目链接:70. 爬楼梯
代码随想录
视频:带你学透动态规划-爬楼梯(对应力扣70.爬楼梯)| 动态规划经典入门题目_哔哩哔哩_bilibili
看完代码随想录之后的想法:
我们要知道动态规划的五部曲;
1,确定dp数组的含义,下标的含义;
2,确定递推公式;
3,确定dp数组如何初始化;
4,确定遍历顺序;
5,打印dp数组(用来debug)
1,dp[i]表示到达第i个台阶有dp[i]个方法;
2,dp[i] = dp[i - 1] + dp[i - 2];到达第i个台阶需要的方法等于到达第i - 1 的方法数加上 到达第i - 2 的方法数
3,dp[0] 没有意义,dp[1] = 1, dp[2] = 2;
4,从前向后遍历;
5,可以打印dp数组用来debug;
class Solution {public int climbStairs(int n) {int[] dp = new int[46];dp[1] = 1;dp[2] = 2;for(int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}
题目链接:59.螺旋矩阵II
文章讲解:代码随想录
视频讲解:一入循环深似海 | LeetCode:59.螺旋矩阵II
看完代码随想录之后的想法:
我们要知道动态规划的五部曲;
1,确定dp数组的含义,下标的含义;
2,确定递推公式;
3,确定dp数组如何初始化;
4,确定遍历顺序;
5,打印dp数组(用来debug);
1,dp[i] 的含义到达下标i的位置所需要的的di[i](最小花费);
2,递推公式dp[i] = Math.min((dp[i - 1] + cost[i - 1]), dp[i - 2] + cost[i - 2]);
dp[i] 的含义到达下标i的位置所需要的的最小花费;
dp[i - 1] 的含义到达下标i - 1的位置所需要的的最小花费 加上第i-1向上的花费
dp[i - 2] 的含义到达下标i - 2的位置所需要的的最小花费 加上第i-2向上的花费;
然后取最小值;
class Solution {public int minCostClimbingStairs(int[] cost) {int n = cost.length;int[] dp = new int[1001];for(int i = 2; i <= n; i++)dp[i] = Math.min((dp[i - 1] + cost[i - 1]), dp[i - 2] + cost[i - 2]);return dp[n];}
}
总结:
昨天下午学了一会计组,但是晚上没有学,想要淘一个二手自行车,今天开始动态规划的入门,背了一个小时的英语单词;