当前位置: 首页 > news >正文

简洁网站倒计时代码百度百度一下官网

简洁网站倒计时代码,百度百度一下官网,制作动态网页官网,开一个网站_只做同城交易数据结构-二叉树 二叉树的概念二叉树的遍历分类 建立二叉树,并遍历二叉树的最小单元二叉树的最小单元初始化初始化二叉树前序遍历的实现中序遍历的实现后序遍历的实现计算节点的个数计算树的深度求第k层的个数查找二叉树的元素分层遍历 全部代码如下 二叉树的概念 二…

数据结构-二叉树

    • 二叉树的概念
    • 二叉树的遍历分类
  • 建立二叉树,并遍历
    • 二叉树的最小单元
    • 二叉树的最小单元初始化
    • 初始化二叉树
    • 前序遍历的实现
    • 中序遍历的实现
    • 后序遍历的实现
    • 计算节点的个数
    • 计算树的深度
    • 求第k层的个数
    • 查找二叉树的元素
    • 分层遍历
  • 全部代码如下

二叉树的概念

在这里插入图片描述

二叉树的遍历分类

有前序遍历,中序遍历,后序遍历和层序遍历
在这里插入图片描述

规则

1.遇到根可以直接访问根
2.遇到左子树,右子树,不可以直接访问,要将其看作一颗新的二叉树,按遍历规则,再次循环,直至左子树或右子树为空,则可访问空。

前序遍历
在这里插入图片描述
中序遍历和后序遍历
中序遍历:
三者访问根的时机不同

层序遍历:一层一层的进行

1 2 4 3 5 6

建立二叉树,并遍历

二叉树的最小单元

根,左子树和右子树

typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;

二叉树的最小单元初始化

BTNode* BuyNode(BTDataType x)
{BTNode* node=(BTNode*)malloc(sizeof(BTNode));if (node==NULL){perror("malloc fail");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}

初始化二叉树

BTNode* CreatTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right=node6;return node1;
}

前序遍历的实现

函数的回归条件为root为空,或者函数正常结束
按照顺序依次为:根,左子树,右子树

void PreOrder(BTNode* root)
{if (root==NULL){printf("NULL ");return;}//root,left,rightprintf("%d ",root->data);PreOrder(root->left);PreOrder(root->right);
}

递归调用展开图
在这里插入图片描述

结果如下:
在这里插入图片描述

中序遍历的实现

函数的回归条件为root为空,或者函数正常结束
按照顺序依次为:左子树,根,右子树

void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}

后序遍历的实现

函数的回归条件为root为空,或者函数正常结束
按照顺序依次为:左子树,右子树,根

void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}

计算节点的个数

利用分治法求节点的个数,只有节点存在时,才会+1,并返回下层的统计个数
在这里插入图片描述

int TreeSize(BTNode* root)
{if (root==NULL){return 0;}else{return TreeSize(root->left) + TreeSize(root->right)+1;}
}

执行结果如下:
在这里插入图片描述

计算树的深度

在这里插入图片描述

int TreeHeight(BTNode* root)
{if (root==NULL){return 0;}int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight > rightHeight ?leftHeight + 1 :rightHeight + 1;
}

代码执行结果如下:
在这里插入图片描述

求第k层的个数

在这里插入图片描述

int TreeLevel(BTNode* root,int k)
{if (root==NULL){return 0;}if (k==1){return 1;}return TreeLevel(root->left, k - 1) + TreeLevel(root->right, k - 1);
}

运行结果如下:
在这里插入图片描述

查找二叉树的元素

在这里插入图片描述

BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root==NULL){return NULL;}if (root->data==x){return root;}BTNode* lret = TreeFind(root->left, x);if (lret){return lret;}BTNode* rret = TreeFind(root->right, x);if (rret){return rret;}return NULL;
}

结果如下:
在这里插入图片描述

分层遍历

利用队列,先将根push,进入循环,可pop,再将层子节点push,依次循环。安照队列先进先出的原则,可实现分层打印

void LevelOrder(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q,root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ",front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestroy(&q);
}

结果如下:

在这里插入图片描述
判断是否为完全二叉树

bool TreeComplete(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front==NULL){break;}else{QueuePush(&q, front->left);QueuePush(&q, front->right);}}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

全部代码如下

test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include "Queue.h"typedef int BTDataType;typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;BTNode* BuyNode(BTDataType x)
{BTNode* node=(BTNode*)malloc(sizeof(BTNode));if (node==NULL){perror("malloc fail");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}BTNode* CreatTree()
{BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);//BTNode* node6 = BuyNode(6);//node1->left = node2;//node1->right = node4;//node2->left = node3;//node4->left = node5;//node4->right=node6;node1->left = node2;node1->right = node3;node2->left = node4;//node4->left = node5;node3->right = node5;return node1;
}void PreOrder(BTNode* root)
{if (root==NULL){printf("NULL ");return;}//root,left,rightprintf("%d ",root->data);PreOrder(root->left);PreOrder(root->right);
}void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}//分治法求节点的个数
int TreeSize(BTNode* root)
{if (root==NULL){return 0;}else{return TreeSize(root->left) + TreeSize(root->right)+1;}
}int TreeHeight(BTNode* root)
{if (root==NULL){return 0;}int leftHeight = TreeHeight(root->left);int rightHeight = TreeHeight(root->right);return leftHeight > rightHeight ?leftHeight + 1 :rightHeight + 1;
}int TreeLevel(BTNode* root,int k)
{if (root==NULL){return 0;}if (k==1){return 1;}return TreeLevel(root->left, k - 1) + TreeLevel(root->right, k - 1);
}//查找元素
BTNode* TreeFind(BTNode* root, BTDataType x)
{if (root==NULL){return NULL;}if (root->data==x){return root;}BTNode* lret = TreeFind(root->left, x);if (lret){return lret;}BTNode* rret = TreeFind(root->right, x);if (rret){return rret;}return NULL;
}//分层遍历
void LevelOrder(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q,root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ",front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestroy(&q);
}//判断是不是完全二叉树
bool TreeComplete(BTNode* root)
{Quene q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front==NULL){break;}else{QueuePush(&q, front->left);QueuePush(&q, front->right);}}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}
int main()
{BTNode* root = CreatTree();PreOrder(root);printf("\n");InOrder(root);printf("\n");PostOrder(root);printf("\n");printf("%d",TreeSize(root));printf("\n");printf("%d ", TreeHeight(root));printf("\n");printf("%d ", TreeLevel(root,3));printf("\n");printf("%p ", TreeFind(root, 5));printf("\n");printf("%p ", TreeFind(root, 60));printf("\n");LevelOrder(root);printf("TreeComplete: %d", TreeComplete(root));//二维数组return 0;
}

Queue.c

#define _CRT_SECURE_NO_WARNINGS 1
#include "Queue.h"void QueueInit(Quene* pq)
{assert(pq);pq->head = pq->tail = NULL;pq->size = 0;
}void QueueDestroy(Quene* pq)
{assert(pq);QNode* cur = pq->head;while(cur){QNode* next = cur->next;free(cur);cur = next;}pq->head = pq->tail = NULL;pq->size = 0;
}void QueuePush(Quene* pq, QDataType x)
{assert(pq);QNode* newnode = (QNode*)malloc(sizeof(QNode));if (newnode==NULL){perror("malloc fail");return;}newnode->next = NULL;newnode->data = x;//需要判断队列中是否有元素if (pq->head==NULL){pq->head = pq->tail = newnode;}else{pq->tail->next = newnode;pq->tail = newnode;}pq->size++;
}void QueuePop(Quene* pq)
{assert(pq);//确保有队列assert(pq->head != NULL);//确保队列不为空if (pq->head->next==NULL){free(pq->head);pq->head = pq->tail = NULL;}else{QNode* next = pq->head->next;free(pq->head);pq->head = next;}pq->size--;
}int QueueSize(Quene* pq)
{assert(pq);return pq->size;
}bool QueueEmpty(Quene* pq)
{assert(pq);return pq->size==0;
}QDataType QueueFront(Quene* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->head->data;
}QDataType QueueBack(Quene* pq)
{assert(pq);assert(!QueueEmpty(pq));return pq->tail->data;
}

Queue.h

#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>typedef struct BinaryTreeNode* QDataType;//单个节点
typedef struct QueneNode
{struct QueneNode* next;QDataType data;
}QNode;//整个队列
typedef struct Quene
{QNode* head;QNode* tail;int size;
}Quene;//初始化
void QueueInit(Quene* pq);
//销毁
void QueueDestroy(Quene* pq);//入队
void QueuePush(Quene* pq, QDataType x);
//出队
void QueuePop(Quene* pq);//计算队列中元素的个数
int QueueSize(Quene* pq);
//判断队列是否为空
bool QueueEmpty(Quene* pq);//队列中的队头元素
QDataType QueueFront(Quene* pq);
//队列中的队尾元素
QDataType QueueBack(Quene* pq);
http://www.hrbkazy.com/news/35056.html

相关文章:

  • 仿网站模板河北关键词seo排名
  • 怎么看一个网站是用模板什么做的店铺推广方法
  • 网站开发主页seo查询 站长工具
  • 做网站还是做游戏谷歌浏览器下载app
  • 网站开发软件著作权归谁游戏推广工作好做吗
  • php是做网站的吗app推广是做什么的
  • 湖南高端网站建设网站推广优化招聘
  • 南京做企业号微网站营销广州seo服务公司
  • 网站如何备案icp备案上海百度提升优化
  • 企业网站系统手机版渠道推广费用咨询
  • 网站建设手机端官网网站seo视频狼雨seo教程
  • 网站长尾词怎么做开发一个平台需要多少钱
  • 网站建设时间规划西安网站关键词推广
  • 做网站备案时审批号浙江seo外包
  • 石景山网站建设的大公司好消息tvapp电视版
  • 海南网站建设服务seo方案书案例
  • dedecms 网站迁移什么是关键词广告
  • 装修公司怎么做网站推广品牌宣传
  • 个人网站排名欣赏谷歌seo关键词优化
  • 快手点赞购买网站谷歌独立站seo
  • html挂载到wordpress橘子seo查询
  • nas上建设网站什么网站可以免费发广告
  • 自适应网站源码竞价托管外包费用
  • 怎么建立购物网站设计网站模板
  • 哈尔滨做平台网站平台公司吗做网络优化哪家公司比较好
  • 织梦网站模版公司网站设计定制
  • 做游戏网站赚钱吗产品营销策划方案怎么做
  • 网站后台安装深圳企业网站制作公司
  • 网络营销网站建设诊断报告百度官网平台
  • 静态网站优化今日世界杯比分预测最新