当前位置: 首页 > news >正文

北京网站建设的服务域名注册服务网站哪个好

北京网站建设的服务,域名注册服务网站哪个好,网站建设和编程,湖北省发布最新通告1. 微分的定义 (1)定义:设函数在点的某领域内有定义,取附近的点,对应的函数值分别为和, 令,若可以表示成,则称函数在点是可微的。 【 若函数在点是可微的,则可以表达为】…

1.  微分的定义


(1)定义:设函数f(x)在点x_{0}的某领域内有定义,取x_{0}附近的点x_{0}+\Delta x,对应的函数值分别为f(x_{0})f(x_{0}+\Delta x)

                    令\Delta y=f(x_{0}+\Delta x)-f(x_{0}),若\Delta y可以表示成\Delta y=A\Delta x+o(\Delta x),则称函数f(x)在点x_{0}是可微的。

                  \Rightarrow 若函数f(x)在点x_{0}是可微的,则\Delta y=f(x_{0}+\Delta x)-f(x_{0})可以表达为\Delta y=A\Delta x+o(\Delta x)

                    称A\Delta x为函数f(x)在点x_{0}处,改变量\Delta y的微分。记作:可微:dy=A\Delta x;微分:dy|_{x=x_{0}}=A\Delta x

备注:

①:通过绘图理解:A是与\Delta x无关的量,但与x_{0}有关,A就是函数f(x)在点x_{0}处的导数,即{f}'(x_{0})

②:通过绘图理解:根据\Delta y=dy+o(\Delta x)可知,当\Delta x\rightarrow 0时,dy\rightarrow \Delta y,则有dy \approx\Delta y

③:函数的微分dy是函数的增量\Delta y主要部分,且是\Delta x的线性函数,故称函数的微分dy是函数的增量\Delta y的线性主部。

④:通常把自变量x的增量\Delta x称为自变量的微分,记作dx,即dx=\Delta x

⑤:对于一元函数而言:可导即可微,可微即可导。

⑥:一元函数求微分的表达式:dy = {f}'(x)dx\Rightarrow 想求微分,先求导,然后左右两边同乘dx

(2)几何意义:通过绘图理解:函数的微分dy是函数f(x)在点x_{0}处的切线对应于\Delta x在纵坐标上的增量。

备注:\Delta y:属于精确值;dy:属于\Delta y的近似值。即:dy \approx\Delta y

(3)实际应用:

  ①:根据\Delta y \approx dy={f}'(x_{0})\Delta x,即:f(x_{0}+\Delta x)-f(x_{0})\approx {f}'(x_{0})\Delta x可得:f(x_{0}+\Delta x)\approx f(x_{0})+{f}'(x_{0})\Delta x

         \Rightarrow 可以把线性函数的数值计算结果作为原本函数的数值的近似值(\Delta x的值选取要尽可能的小)。

  ②:根据\Delta y=dy+o(\Delta x)可知,当|\Delta x|比较小时,|\Delta y-dy||\Delta x|要小的多(高阶无穷小),因此函数f(x)在点x_{0}附近可以

         用切线来近似代替曲线段。它的直接应用就是函数的线性化。

         \Rightarrow 当|\Delta x|比较小时,则有:sinx\approx xtanx\approx xe^{x} \approx 1+xln(1+x)\approx x(1+x)^{\alpha }\approx 1+\alpha x

导数与微分的区别:导数解决的是函数的变化率的问题;微分解决的是函数的增量的问题。


2.  微分的中值定理


(1)费马引理:设函数f(x)在点x_{0}的某领域内有定义,且在x_{0}点处可导,对于点x_{0}的某领域内任意x,若f(x)\leq f(x_{0})

                            f(x)\geq f(x_{0}),则函数f(x)在点x_{0}处的导数为零,即{f}'(x_{0})=0(斜率为零)。

(2)罗尔中值定理:设函数f(x)在①:闭区间[a,b]连续,②:开区间(a,b)可导,③:f(a)=f(b),则在开区间(a,b)上,

                                   至少存在一点\xi \in (a,b),使得{f}'(\xi )=0

                                   \Rightarrow 说明函数f(x)图像的切线斜率,存在为0的情况。

(3)拉格朗日中值定理:设函数f(x)在①:闭区间[a,b]连续,②:开区间(a,b)可导,则在开区间(a,b)上,至少存在一点\xi \in (a,b)

                                          使得f(b)-f(a)={f}'(\xi )(b-a)

                                          \Rightarrow 说明函数f(x)图像的切线的斜率与由点a和点b所确定的直线的斜率,存在相等的情况。

备注:

①:设函数f(x)在区间I上连续、可导且导数恒为0,则函数f(x)\equiv C(C为常数)。

②:当x>0时,有:\frac{x}{1+x}<ln(1+x)<x

(4)柯西中值定理:设函数f(x)g(x)在①:闭区间[a,b]连续,②:开区间(a,b)可导,③:\forall x\in (a,b){g}'(x)\neq 0

                                   则在开区间(a,b)上,至少存在一点\xi \in (a,b),使得\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{​{f}'(\xi )}{​{g}'(\xi )}

备注:柯西中值定理与拉格朗日中值定理最终表示的含义都是一样的。


http://www.hrbkazy.com/news/39439.html

相关文章:

  • 网站制作 昆明b站推广网站入口
  • 网站开发毕业论文重庆网络推广外包
  • java做网站核心关键词如何优化
  • 企业做网站的公司上海培训机构有哪些
  • 网站的备用金怎么做凭证西安seo学院
  • 愿意做cps的网站鄂州seo
  • 源码交易平台网站源码最近新闻摘抄
  • c2c网站名称和网址百度推广案例及效果
  • 彩票网站开发www.udan英文seo实战派
  • 免费好用的云电脑陕西优化疫情防控措施
  • 专做ppt的网站洛阳seo博客
  • 无网站做网赚网络营销服务的特点有哪些
  • wordpress 高级如何优化网站首页
  • 怎么可以自己制作网站最大的搜索网站排名
  • 做最优秀的自己演讲视频网站百度指数如何提升
  • 网页设计师联盟seo每日
  • 建筑装饰装修seo引擎优化培训
  • 网站怎么优化seo网络推广公司有多少家
  • 医学ppt模板下载免费seo自然排名优化
  • 北京做网站费用关键词小说
  • 徐州集团网站建设多少钱网站如何推广出去
  • 猎聘网招聘电商seo
  • 深圳微商城网站设计顾问
  • 房地产集团网站建设方案请你设计一个网络营销方案
  • 怎么做猫的静态网站国内新闻摘抄2022年
  • 网上书城网站开发外文参考文献福州专业的seo软件
  • 软件下载网站知乎站长工具域名解析
  • 专业做网站设计哪家好seo外包是什么意思
  • 房产网站建设批发百度权重是什么
  • 使用万网怎么做网站网络营销的成功案例分析