当前位置: 首页 > news >正文

大连网站网站建设奉化seo页面优化外包

大连网站网站建设,奉化seo页面优化外包,仿一个网站,wordpress the permalink红黑树 一、红黑树的概念 红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有…

红黑树

一、红黑树的概念

红黑树(Red Black Tree) 是一种自平衡二叉查找树,在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

在这里插入图片描述

AVL树 VS 红黑树

  • 红黑树是一种特化的AVL树,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。

  • AVL树要求每棵子树的左右高度差不超过1,是严格平衡;而红黑树要求最长路径不超过最短路径的2倍,是接近平衡。

  • 而红黑树是一种AVL树的变体,它要求最长路径不超过最短路径的2倍,左右子树高差有可能大于 1。所以红黑树不是严格意义上的平衡二叉树(AVL),但对之进行平衡的代价较低, 其平均统计性能要强于 AVL

  • 相对而言,插入或删除同样的数据,AVL树旋转的更多,而红黑树则旋转的更少效率相对较高


二、红黑树的性质

红黑树是每个结点都带有颜色属性的二叉查找树,颜色或红色或黑色。 在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:

  • 性质1. 结点是红色或黑色。

  • 性质2. 根结点是黑色。

  • 性质3. 每个红色结点的两个子结点都是黑色。(每条路径上不能有两个连续的红色结点)

  • 性质4. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。 (每条路径上的黑色节点数量相同)

  • 性质5. 所有NIL结点都是黑色的。(NIL节点即空结点)

这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。

是性质3导致路径上不能有两个连续的红色结点确保了这个结果。最短的可能路径都是黑色结点,最长的可能路径有交替的红色和黑色结点。因为根据性质4所有路径都有相同数目的黑色结点,这就表明了没有路径能多于任何其他路径的两倍长。

思考:新插入的节点应该设为黑色还是红色?

  • 如果将新插入的节点设为黑色,不管插到那条路径都必然违反性质4。

  • 如果将新插入的节点设为红色:如果父节点是红色则违反性质3,需要进行调整;如果父节点是黑色就正常插入,无需调整。

  • 对比两种情况,最终选择将新插入的节点设为红色。


三、STL中的红黑树结构

  • 为了后续实现关联式容器map/set,STL红黑树的实现中增加一个头结点;
  • 因为根节点必须为黑色,为了与根节点进行区分,将头结点给成红色;
  • 并且让头结点的_parent域指向红黑树的根节点,_left域指向红黑树中最小的节点,_right域指向红黑树中最大的节点。

在这里插入图片描述

头结点的作用:

  • STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?
  • 能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行–操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:

四、核心结构

enum Color{RED,BLACK
};
//红黑树的节点
template <class K, class V>
struct RBTreeNode{ RBTreeNode<K,V> *_left;RBTreeNode<K,V> *_right;RBTreeNode<K,V> *_parent;pair<K,V> _kv;Color _color; //颜色属性RBTreeNode(const pair<K,V> &kv=pair<K,V>(), Color color = RED):_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_color(color){}
};//红黑树结构
template <class K, class V>
class RBTree{ typedef RBTreeNode<K,V> Node;Node *_phead; //指向头结点的指针public:RBTree(){_phead = new Node; //红黑树的头结点_phead->_left = _phead; //起初先让头结点的左右指针指向自己_phead->_right = _phead;}Node*& GetRoot(){ //返回根节点指针的引用,便于进行修改return _phead->_parent; }//........
private:Node* LeftMost(){ //返回红黑树的最左节点指针Node *root = GetRoot();if(root == nullptr) //如果根节点为空,就返回_pheadreturn _phead;else{Node *left = root;while(left->_left!=nullptr){left = left->_left;}return left;}}Node* RightMost(){ //返回红黑树的最右节点指针Node *root = GetRoot();if(root == nullptr) //如果根节点为空,就返回_pheadreturn _phead;else{Node *right = root;while(right->_right!=nullptr){right = right->_right;}return right;}}//......
};

五、红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  1. 按照二叉搜索的树规则插入新节点

  2. 检测新节点插入后,红黑树的性质是否造到破坏。因为新节点的默认颜色是红色,因此:

    • 如果新插入的节点是根节点,需要将节点变为黑色以满足性质2。
    • 如果父节点是黑色的,没有违反红黑树的任何性质,则不需要调整;
    • 但如果父节点颜色为红色时,就违反了性质3:路径上不能有两个连续的红色结点。此时需要对红黑树分情况来讨论:

在讲解情况三、四、五之前,先说明一下:

  • cur为当前节点(关注节点),p(parent)为父节点,g(grandparent)为祖父节点,u(uncle)为叔叔节点;
  • cur不一定就是新插入的节点,也有可能是因为 cur 的子树在调整的过程中将 cur 节点的颜色由黑色改成红色。

5.1 情况一:u存在且为红

情况一: cur为红,p为红,g为黑,u存在且为红

抽象分析:

在这里插入图片描述

  1. 因为cur和p都为红色违反性质3,所以一定要把p变为黑色。
  2. 但只变p又违反性质4各路径上黑色节点的数量不同,所以要把u也变为黑色。
  3. 但原来所有路径上只有1个黑色节点(可见的)而现在变为2个。如果g树是子树,又会使整棵树违反性质4。所以要把g变为红色。
  4. g的父节点也可能是红色,所以要继续向上调整。

解决方式:变色并继续向上调整

  1. 将p,u都改为黑色,g改为红色;
  2. 如果g不为根,就把g当成cur继续向上调整;
  3. 如果g为根,就把g变为黑色。性质2:根节点是黑色的。

具体分析:

cur就是新插入的节点:

在这里插入图片描述

cur节点原来是黑色之后又被调整为红色:

在这里插入图片描述

注意:a,b,c,d,e可能是连续的几层黑色节点(要求每条路径的黑色节点数量相同),然后才出现上述情况。因为情况太多,过于复杂故作省略。


5.2 情况二:u不存在/u存在且为黑(单旋)

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(单旋)

抽象分析:
在这里插入图片描述

  1. 因为cur和p都为红色违反性质3,所以一定要把p变为黑色。
  2. 但只变p使左路黑节点+1违反性质4,因此还要以g为轴点右单旋,使左路黑节点-1。
  3. 但此时由于右单旋使右路黑节点+1,所以要将g变为红色,右路黑节点-1。最终满足性质4。

解决方式:单旋+变色

  1. 如果p为g的左孩子,cur为p的左孩子(左左),则对g进行右单旋;
  2. 如果p为g的右孩子,cur为p的右孩子(右右),则对g进行左单旋;
  3. p、g变色–p变黑色,g变红色。
  4. 完成旋转变色后每条路径的黑节点数量相同且与插入前也相同,并且根节点为黑色不需要继续往上处理。

具体分析:u 的情况有两种

uncle节点不存在:

如果 u 节点不存在,则 cur 一定是新插入节点,因为如果 cur 不是新插入节点,则 cur 和 p 一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个数相同。

在这里插入图片描述

uncle节点存在且为黑色:

如果 u 节点存在且为黑色,那么 cur 节点原来的颜色也一定是黑色的,现在看到其是红色的原因是因为 cur 的子树在调整的过程中将 cur 节点的颜色由黑色改成红色。

在这里插入图片描述

注意:a,b,c,d,e可能是连续的几层黑色节点(要求每条路径的黑色节点数量相同),然后才出现上述情况。因为情况太多,过于复杂故作省略。


5.3 情况三:u不存在/u存在且为黑(双旋)

情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋)

抽象图:
在这里插入图片描述
情况三先以p为轴点左单旋,转换为情况二。

解决方式:双旋+变色

  1. p为g的左孩子,cur为p的右孩子(左右),则先对p做左单旋,再对g做右单旋;
  2. p为g的右孩子,cur为p的左孩子(右左),则先对p做右单旋,再对g做左单旋;
  3. cur、g变色–cur变黑色,g变红色。
  4. 完成旋转变色后每条路径的黑节点数量相同且与插入前也相同,并且根节点为黑色不需要继续往上处理。

具体分析:

uncle节点不存在

在这里插入图片描述

uncle节点存在且为黑色:

在这里插入图片描述

注意:a,b,c,d,e可能是连续的几层黑色节点(要求每条路径的黑色节点数量相同),然后才出现上述情况。因为情况太多,过于复杂故作省略。

总结:

  • 二叉树插入操作的难点在于通过变色和旋转操作恢复红黑树的性质,性质得到满足红黑树就能做到近似平衡:最长路径不超过最短路径的两倍。
  • 恢复的最终目的:1.关注子树满足红黑树的所有性质 2.插入前后关注子树每条路径的黑节点数量不变(保证整棵树的性质4)

5.4 插入代码

bool Insert(const pair<K,V> &kv)
{//1. 按照二叉搜索的树规则插入新节点Node* &root = GetRoot(); //这里注意要用引用接收返回值if(root == nullptr){//如果新插入的节点是根节点,需要将节点变为黑色以满足性质2root = new Node(kv, BLACK); //因为GetRoot返回指针的引用,所以改的实际是_phead->_parentroot->_parent = _phead;_phead->_left = root;_phead->_right = root;return true;}Node *cur = root;Node *parent = nullptr;while(cur != nullptr){if(kv.first > cur->_kv.first){parent = cur;cur = cur->_right;}else if(kv.first < cur->_kv.first){parent  = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv,RED); //新插入的节点默认是红色的if(kv.first > parent->_kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;//2.检测新节点插入后,红黑树的性质是否造到破坏。//如果父节点是黑色的,没有违反红黑树的任何性质,则不需要调整;//但如果父节点颜色为红色时,就违反了性质3:路径上不能有两个连续的红色结点。//上一次循环中grandparent 为根节点,此次循环parent == _pheadwhile(parent != _phead && parent->_color == RED) {Node *grandparent = parent->_parent;//断言检查:grandparent一定不为空且为黑色!assert(grandparent != nullptr);assert(grandparent->_color == BLACK);Node *uncle = grandparent->_left;if(parent == grandparent->_left)uncle = grandparent->_right;if(uncle != nullptr && uncle->_color == RED) //情况一:uncle存在且为红{parent->_color = uncle->_color = BLACK; //变色grandparent->_color = RED;cur = grandparent; //继续向上调整parent = cur->_parent;}else //情况二、三:uncle不存在或uncle存在且为黑{if(parent == grandparent->_left){if(cur == parent->_left) //左左{RotateR(grandparent); //右单旋parent->_color = BLACK; //变色grandparent->_color = RED;}else{ //左右RotateL(parent); //左右双旋RotateR(grandparent);cur->_color = BLACK; //变色grandparent->_color = RED;}}else{if(cur == parent->_right) //右右{RotateL(grandparent); //左单旋parent->_color = BLACK; //变色grandparent->_color = RED;}else{ //右左RotateR(parent); //右左双旋RotateL(grandparent);cur->_color = BLACK; //变色grandparent->_color = RED;}}//旋转变色后无需继续调整,直接退出循环。break; } //end of else} //end of while//如果在调整过程中将根节点变为红色,记得重新变回黑色。if(parent == _phead) root->_color = BLACK;//令头节点的左指针指向红黑树的最左节点_phead->_left = LeftMost();//令头节点的右指针指向红黑树的最右节点_phead->_right = RightMost();return true;
}

5.5 旋转代码

void RotateL(Node *parent){Node *subR = parent->_right;Node *subRL = subR->_left;Node *ppNode = parent->_parent;parent->_right = subRL;if(subRL != nullptr){subRL->_parent = parent;}subR->_left = parent;parent->_parent = subR;if(ppNode == _phead){_phead->_parent = subR;}else{if(ppNode->_left == parent){ppNode->_left = subR;}else{ppNode->_right = subR;}}subR->_parent = ppNode;
}void RotateR(Node *parent){Node *subL = parent->_left;Node *subLR = subL->_right;Node *ppNode = parent->_parent;parent->_parent = subL;subL->_right = parent;parent->_left = subLR;if(subLR != nullptr)subLR->_parent = parent;if(ppNode == _phead){ppNode->_parent = subL;}else{if(ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}}subL->_parent = ppNode;
}

六、查找和遍历

Node* Find(const K &k){Node *root = GetRoot();if(root == nullptr)return nullptr;Node *cur = root;while(cur != nullptr){if(k > cur->_kv.first){cur = cur->_right;}else if(k < cur->_kv.first){cur = cur->_left;}else{return cur;}}return nullptr;
}void Inorder(){_Inorder(GetRoot());cout << endl;
}void _Inorder(Node *root){if(root == nullptr) return; _Inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << " ";_Inorder(root->_right);
}

七、红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
bool IsValidRBTree(){Node *root = GetRoot();//空树也是红黑树if(root == nullptr) return true;//检查性质2:if(root->_color != BLACK){cout << "违反性质2:根节点不为黑色!" << endl;return false;}//检查性质3,4:int benchmark = 0;return _IsValidRBTree(root, 0, benchmark);
}//blacknum:用于记录当前路径的黑色节点个数,不能传引用。
//benchmark:用于记录第一条路径的黑色节点个数。需要传引用,返回给上层递归。
bool _IsValidRBTree(Node *root, int blacknum, int &benchmark){if(root == nullptr){if(benchmark == 0) //表示第一条路径遍历完{benchmark = blacknum; //记录第一条路径的黑色节点个数return true;}else{if(blacknum != benchmark) //如果其他路径的blacknum与第一条路径不同,说明违反性质4{cout << "违反性质4:从任意节点到每个叶子节点的所有路径都包含相同数目的黑色节点!" << endl;return false;}else{return true;}}}//检查性质3:if(root->_color == RED && root->_parent->_color == RED){cout << "违反性质3:路径上有两个连续的红色节点!" << endl;return false;}if(root->_color == BLACK){++blacknum; }return _IsValidRBTree(root->_left, blacknum, benchmark)&& _IsValidRBTree(root->_right, blacknum, benchmark);
}

文章转载自:
http://gratefully.wwxg.cn
http://masan.wwxg.cn
http://mne.wwxg.cn
http://fluf.wwxg.cn
http://eugenicist.wwxg.cn
http://matchmark.wwxg.cn
http://trapper.wwxg.cn
http://undissociated.wwxg.cn
http://tachycardiac.wwxg.cn
http://newspaperdom.wwxg.cn
http://abeokuta.wwxg.cn
http://winchman.wwxg.cn
http://emmenology.wwxg.cn
http://accouchement.wwxg.cn
http://oven.wwxg.cn
http://basketful.wwxg.cn
http://begird.wwxg.cn
http://parallelogram.wwxg.cn
http://reluct.wwxg.cn
http://gravisphere.wwxg.cn
http://ispy.wwxg.cn
http://driftless.wwxg.cn
http://suffragist.wwxg.cn
http://initiatrix.wwxg.cn
http://mastoideal.wwxg.cn
http://priestly.wwxg.cn
http://laryngotracheal.wwxg.cn
http://lives.wwxg.cn
http://uncut.wwxg.cn
http://onsweep.wwxg.cn
http://traveller.wwxg.cn
http://dihydrate.wwxg.cn
http://discordant.wwxg.cn
http://unutterably.wwxg.cn
http://deschooler.wwxg.cn
http://resinic.wwxg.cn
http://manoeuvre.wwxg.cn
http://berbera.wwxg.cn
http://overabundance.wwxg.cn
http://longshoreman.wwxg.cn
http://lactoferrin.wwxg.cn
http://hairpin.wwxg.cn
http://liny.wwxg.cn
http://therophyte.wwxg.cn
http://cineration.wwxg.cn
http://favour.wwxg.cn
http://quackish.wwxg.cn
http://gainings.wwxg.cn
http://autocephaly.wwxg.cn
http://ngwee.wwxg.cn
http://fisticuff.wwxg.cn
http://leader.wwxg.cn
http://pollinose.wwxg.cn
http://diabolism.wwxg.cn
http://matzoth.wwxg.cn
http://suky.wwxg.cn
http://paranephros.wwxg.cn
http://calescent.wwxg.cn
http://aggrieve.wwxg.cn
http://mounty.wwxg.cn
http://dortmund.wwxg.cn
http://availably.wwxg.cn
http://geosynclinal.wwxg.cn
http://solecist.wwxg.cn
http://whizzo.wwxg.cn
http://orthohydrogen.wwxg.cn
http://maurice.wwxg.cn
http://pleb.wwxg.cn
http://rowdyism.wwxg.cn
http://long.wwxg.cn
http://australoid.wwxg.cn
http://trinitrobenzene.wwxg.cn
http://estrepe.wwxg.cn
http://ungroup.wwxg.cn
http://oxo.wwxg.cn
http://anthropomorphosis.wwxg.cn
http://nodus.wwxg.cn
http://indic.wwxg.cn
http://chibcha.wwxg.cn
http://laburnum.wwxg.cn
http://floribunda.wwxg.cn
http://construe.wwxg.cn
http://cried.wwxg.cn
http://disemplane.wwxg.cn
http://unharmed.wwxg.cn
http://tcheka.wwxg.cn
http://longline.wwxg.cn
http://taxing.wwxg.cn
http://murid.wwxg.cn
http://scantily.wwxg.cn
http://dentistry.wwxg.cn
http://cerebralism.wwxg.cn
http://workover.wwxg.cn
http://subversive.wwxg.cn
http://goal.wwxg.cn
http://butyrometer.wwxg.cn
http://angiology.wwxg.cn
http://airburst.wwxg.cn
http://manu.wwxg.cn
http://canescence.wwxg.cn
http://www.hrbkazy.com/news/61786.html

相关文章:

  • wordpress ping地址商品seo关键词优化
  • 俄罗斯网站模版百度推广后台登录页面
  • 苏州怎么政府网站建设品牌推广的渠道有哪些
  • 企业网站分析报告seo研究中心超逸seo
  • 星沙网站制作找文网客服联系方式
  • 幼儿园网站建设实践研究国产免费crm系统有哪些在线
  • 做外贸的人如何上国外网站十八大禁用黄app入口
  • 网站模板设计定制化服务吉林seo基础知识
  • 海南的房产网站建设广州seo托管
  • 昆明企业网站建设公司今日军事新闻最新消息
  • 南阳网站建设制作无锡seo网站排名
  • 网站备案安全承诺书广州网站优化公司
  • 大连坐做网站公司全网营销平台有哪些
  • 深圳网络做网站百度发布
  • 做电商的几个网站吗站长工具app下载
  • b2b 网站建设北京外贸网站优化
  • 郑州大学现代远程教育《网页设计与网站建设》课程考核要求中国职业培训在线官网
  • 怎么做网站外推怎么自己做个网站
  • 哪个网站可以做司考题seo外包公司哪家专业
  • 网上做网站广告投放seo免费课程视频
  • 八宝山网站建设徐州百度运营中心
  • 网站色调红黑网络推广和网站推广平台
  • 南京自助建站注册网站怎么注册
  • 做宣传册参考的网站广告公司注册
  • 东莞微网站建设多少钱品牌宣传如何做
  • 青岛的网站设计好的在线crm系统
  • 网页设计费用标准深圳seo优化seo优化
  • 爱妮微如何做网站链接的网址篮网目前排名
  • 成都建设二维码网站网络销售怎么做
  • 网站维护托管要多少钱淘宝关键词排名怎么查询