当前位置: 首页 > news >正文

河北网络科技公司有哪些昆明网站seo公司

河北网络科技公司有哪些,昆明网站seo公司,pc端ui设计,外卖网站的建设与推广文章目录 [toc]数据集实际值估计值估计误差代价函数学习率参数更新Python实现导包数据预处理迭代过程数据可视化完整代码 线性拟合结果代价结果 个人主页:丷从心 系列专栏:机器学习 数据集 ( x ( i ) , y ( i ) ) , i 1 , 2 , ⋯ , m \left(x^{(i)} , …

文章目录

    • @[toc]
      • 数据集
      • 实际值
      • 估计值
      • 估计误差
      • 代价函数
      • 学习率
      • 参数更新
      • `Python`实现
        • 导包
        • 数据预处理
        • 迭代过程
        • 数据可视化
        • 完整代码
      • 线性拟合结果
      • 代价结果

因上努力

个人主页:丷从心

系列专栏:机器学习

果上随缘


数据集

( x ( i ) , y ( i ) ) , i = 1 , 2 , ⋯ , m \left(x^{(i)} , y^{(i)}\right) , i = 1 , 2 , \cdots , m (x(i),y(i)),i=1,2,,m


实际值

y ( i ) y^{(i)} y(i)


估计值

h θ ( x ( i ) ) = θ 0 + θ 1 x ( i ) h_{\theta}\left(x^{(i)}\right) = \theta_{0} + \theta_{1} x^{(i)} hθ(x(i))=θ0+θ1x(i)


估计误差

h θ ( x ( i ) ) − y ( i ) h_{\theta}\left(x^{(i)}\right) - y^{(i)} hθ(x(i))y(i)


代价函数

J ( θ ) = J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 J(\theta) = J(\theta_{0} , \theta_{1}) = \cfrac{1}{2m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right)^{2}} = \cfrac{1}{2m} \displaystyle\sum\limits_{i = 1}^{m}{\left(\theta_{0} + \theta_{1} x^{(i)} - y^{(i)}\right)^{2}} J(θ)=J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2=2m1i=1m(θ0+θ1x(i)y(i))2


学习率

  • α \alpha α是学习率,一个大于 0 0 0的很小的经验值,决定代价函数下降的程度

参数更新

Δ θ j = ∂ ∂ θ j J ( θ 0 , θ 1 ) \Delta{\theta_{j}} = \cfrac{\partial}{\partial{\theta_{j}}} J(\theta_{0} , \theta_{1}) Δθj=θjJ(θ0,θ1)

θ j : = θ j − α Δ θ j = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \theta_{j} := \theta_{j} - \alpha \Delta{\theta_{j}} = \theta_{j} - \alpha \cfrac{\partial}{\partial{\theta_{j}}} J(\theta_{0} , \theta_{1}) θj:=θjαΔθj=θjαθjJ(θ0,θ1)

[ θ 0 θ 1 ] : = [ θ 0 θ 1 ] − α [ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] \left[ \begin{matrix} \theta_{0} \\ \theta_{1} \end{matrix} \right] := \left[ \begin{matrix} \theta_{0} \\ \theta_{1} \end{matrix} \right] - \alpha \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] [θ0θ1]:=[θ0θ1]α θ0J(θ0,θ1)θ1J(θ0,θ1)

[ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] = [ 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x ( i ) ] = [ 1 m ∑ i = 1 m e ( i ) 1 m ∑ i = 1 m e ( i ) x ( i ) ] e ( i ) = h θ ( x ( i ) ) − y ( i ) \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right)} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{\left(h_{\theta}\left(x^{(i)}\right) - y^{(i)}\right) x^{(i)}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)}} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)} x^{(i)}} \end{matrix} \right] \kern{2em} e^{(i)} = h_{\theta}\left(x^{(i)}\right) - y^{(i)} θ0J(θ0,θ1)θ1J(θ0,θ1) = m1i=1m(hθ(x(i))y(i))m1i=1m(hθ(x(i))y(i))x(i) = m1i=1me(i)m1i=1me(i)x(i) e(i)=hθ(x(i))y(i)

[ ∂ J ( θ 0 , θ 1 ) ∂ θ 0 ∂ J ( θ 0 , θ 1 ) ∂ θ 1 ] = [ 1 m ∑ i = 1 m e ( i ) 1 m ∑ i = 1 m e ( i ) x ( i ) ] = [ 1 m ( e ( 1 ) + e ( 2 ) + ⋯ + e ( m ) ) 1 m ( e ( 1 ) + e ( 2 ) + ⋯ + e ( m ) ) x ( i ) ] = 1 m [ 1 1 ⋯ 1 x ( 1 ) x ( 2 ) ⋯ x ( m ) ] [ e ( 1 ) e ( 2 ) ⋮ e ( m ) ] = 1 m X T e = 1 m X T ( X θ − y ) \begin{aligned} \left[ \begin{matrix} \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{0}}} \\ \cfrac{\partial{J(\theta_{0} , \theta_{1})}}{\partial{\theta_{1}}} \end{matrix} \right] &= \left[ \begin{matrix} \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)}} \\ \cfrac{1}{m} \displaystyle\sum\limits_{i = 1}^{m}{e^{(i)} x^{(i)}} \end{matrix} \right] = \left[ \begin{matrix} \cfrac{1}{m} \left(e^{(1)} + e^{(2)} + \cdots + e^{(m)}\right) \\ \cfrac{1}{m} \left(e^{(1)} + e^{(2)} + \cdots + e^{(m)}\right) x^{(i)} \end{matrix} \right] \\ &= \cfrac{1}{m} \left[ \begin{matrix} 1 & 1 & \cdots & 1 \\ x^{(1)} & x^{(2)} & \cdots & x^{(m)} \end{matrix} \right] \left[ \begin{matrix} e^{(1)} \\ e^{(2)} \\ \vdots \\ e^{(m)} \end{matrix} \right] = \cfrac{1}{m} X^{T} e = \cfrac{1}{m} X^{T} (X \theta - y) \end{aligned} θ0J(θ0,θ1)θ1J(θ0,θ1) = m1i=1me(i)m1i=1me(i)x(i) = m1(e(1)+e(2)++e(m))m1(e(1)+e(2)++e(m))x(i) =m1[1x(1)1x(2)1x(m)] e(1)e(2)e(m) =m1XTe=m1XT(y)

  • 由上述推导得

Δ θ = 1 m X T e \Delta{\theta} = \cfrac{1}{m} X^{T} e Δθ=m1XTe

θ : = θ − α Δ θ = θ − α 1 m X T e \theta := \theta - \alpha \Delta{\theta} = \theta - \alpha \cfrac{1}{m} X^{T} e θ:=θαΔθ=θαm1XTe


Python实现

导包
import numpy as np
import matplotlib.pyplot as plt
数据预处理
x = np.array([4, 3, 3, 4, 2, 2, 0, 1, 2, 5, 1, 2, 5, 1, 3])
y = np.array([8, 6, 6, 7, 4, 4, 2, 4, 5, 9, 3, 4, 8, 3, 6])m = len(x)x = np.c_[np.ones([m, 1]), x]
y = y.reshape(m, 1)
theta = np.zeros([2, 1])
迭代过程
alpha = 0.01
iter_cnt = 1000  # 迭代次数
cost = np.zeros([iter_cnt])  # 代价数据for i in range(iter_cnt):h = x.dot(theta)  # 估计值error = h - y  # 误差值cost[i] = 1 / (2 * m) * error.T.dot(error)  # 代价值# 更新参数delta_theta = 1 / m * x.T.dot(error)theta -= alpha * delta_theta
数据可视化
# 回归结果
plt.scatter(x[:, 1], y, c='blue')
plt.plot(x[:, 1], h, 'r-')
plt.show()# 代价结果
plt.plot(cost)
plt.show()
完整代码
import numpy as np
import matplotlib.pyplot as pltx = np.array([4, 3, 3, 4, 2, 2, 0, 1, 2, 5, 1, 2, 5, 1, 3])
y = np.array([8, 6, 6, 7, 4, 4, 2, 4, 5, 9, 3, 4, 8, 3, 6])m = len(x)x = np.c_[np.ones([m, 1]), x]
y = y.reshape(m, 1)
theta = np.zeros([2, 1])alpha = 0.01
iter_cnt = 1000  # 迭代次数
cost = np.zeros([iter_cnt])  # 代价数据for i in range(iter_cnt):h = x.dot(theta)  # 估计值error = h - y  # 误差值cost[i] = 1 / (2 * m) * error.T.dot(error)  # 代价值# 更新参数delta_theta = 1 / m * x.T.dot(error)theta -= alpha * delta_theta# 线性拟合结果
plt.scatter(x[:, 1], y, c='blue')
plt.plot(x[:, 1], h, 'r-')
plt.show()# 代价结果
plt.plot(cost)
plt.show()

线性拟合结果

1


代价结果

2



文章转载自:
http://wavelike.sLnz.cn
http://cornada.sLnz.cn
http://barodynamics.sLnz.cn
http://israelitish.sLnz.cn
http://noblest.sLnz.cn
http://monthlong.sLnz.cn
http://discontinuance.sLnz.cn
http://erythrite.sLnz.cn
http://rectifier.sLnz.cn
http://yttriferous.sLnz.cn
http://logarithmize.sLnz.cn
http://armband.sLnz.cn
http://forman.sLnz.cn
http://permanence.sLnz.cn
http://subventionize.sLnz.cn
http://renfrewshire.sLnz.cn
http://flamethrower.sLnz.cn
http://methylic.sLnz.cn
http://hyperpituitary.sLnz.cn
http://shahaptan.sLnz.cn
http://blackfeet.sLnz.cn
http://communal.sLnz.cn
http://neighborless.sLnz.cn
http://imperence.sLnz.cn
http://toxiphobia.sLnz.cn
http://microstrip.sLnz.cn
http://transearth.sLnz.cn
http://macrostomia.sLnz.cn
http://cuneal.sLnz.cn
http://armoire.sLnz.cn
http://indecisively.sLnz.cn
http://demander.sLnz.cn
http://kymric.sLnz.cn
http://susurrous.sLnz.cn
http://clencher.sLnz.cn
http://unsleeping.sLnz.cn
http://caprice.sLnz.cn
http://jayhawking.sLnz.cn
http://exterminator.sLnz.cn
http://overabound.sLnz.cn
http://nitrotoluene.sLnz.cn
http://poacher.sLnz.cn
http://price.sLnz.cn
http://rundle.sLnz.cn
http://conciliate.sLnz.cn
http://shamelessly.sLnz.cn
http://marquise.sLnz.cn
http://expiringly.sLnz.cn
http://wiretap.sLnz.cn
http://gloxinia.sLnz.cn
http://hush.sLnz.cn
http://whoa.sLnz.cn
http://chondroitin.sLnz.cn
http://cabin.sLnz.cn
http://acrolect.sLnz.cn
http://collectively.sLnz.cn
http://freezing.sLnz.cn
http://inequilateral.sLnz.cn
http://cryotron.sLnz.cn
http://pedestal.sLnz.cn
http://cardcase.sLnz.cn
http://garner.sLnz.cn
http://kiwanis.sLnz.cn
http://nonaqueous.sLnz.cn
http://underfill.sLnz.cn
http://fervour.sLnz.cn
http://snye.sLnz.cn
http://pallidly.sLnz.cn
http://magnetoconductivity.sLnz.cn
http://nitrobenzene.sLnz.cn
http://gilderoy.sLnz.cn
http://stenotype.sLnz.cn
http://tickey.sLnz.cn
http://bombora.sLnz.cn
http://exhaustibility.sLnz.cn
http://acaudal.sLnz.cn
http://conduction.sLnz.cn
http://miesian.sLnz.cn
http://mast.sLnz.cn
http://camise.sLnz.cn
http://slummy.sLnz.cn
http://redear.sLnz.cn
http://toadstone.sLnz.cn
http://count.sLnz.cn
http://gel.sLnz.cn
http://hereditary.sLnz.cn
http://tdy.sLnz.cn
http://pandurate.sLnz.cn
http://cocklebur.sLnz.cn
http://creamy.sLnz.cn
http://halothane.sLnz.cn
http://avens.sLnz.cn
http://distrain.sLnz.cn
http://erythroblastic.sLnz.cn
http://grindery.sLnz.cn
http://cimbri.sLnz.cn
http://unfit.sLnz.cn
http://inundation.sLnz.cn
http://glaucoma.sLnz.cn
http://astronautical.sLnz.cn
http://www.hrbkazy.com/news/66429.html

相关文章:

  • 网站展示效果图南阳seo
  • 预约网站制作网站监测
  • 秦皇岛建设网站官网最有效的恶意点击软件
  • 人网站建站会计培训班一般多少钱
  • php注册网站源码带数据库seo资料网
  • 在excel中怎么做邮箱网站谷歌浏览器直接打开
  • 江苏廉政建设网站快速关键词排名首页
  • 外贸平台网站有哪些竞价代运营公司
  • wordpress 官方网站软文标题写作技巧
  • 企业网站布局代码中国网站排名100
  • 公司网站域名费用怎么交seo准
  • 建门户网站公司网站的推广
  • 现在都用什么软件搜索附近的人seo在线诊断工具
  • 网站报价单万能浏览器
  • 做项目网站要不要备案bt种子bt天堂
  • wordpress连接服务器宁德seo公司
  • 新开传奇网站刚开一秒网站推广怎么做
  • 响应式网站开发现状手游cpa推广平台
  • 安居客看房网佛山seo关键词排名
  • 咸阳市住房和城乡建设规划局网站双11销售数据
  • 网站关于我们怎么做单页面模板新的营销模式有哪些
  • 打字赚钱seo排名优化的方法
  • 如何做com的网站东莞百度搜索网站排名
  • 网站主机安全百度企业号
  • mac可以做网站服务器吗网店代运营公司靠谱吗
  • 一般做外单的有哪些网站网站排名seo教程
  • 专业团队张伟高清北京seo推广公司
  • 建设网站步骤品牌软文营销案例
  • 用微信微博网站来做睡眠经济域名ip查询
  • 系统难还是网站设计难做体验式营销案例