当前位置: 首页 > news >正文

创新驱动发展战略内容落实好疫情防控优化措施

创新驱动发展战略内容,落实好疫情防控优化措施,自建网站做外贸的流程,新品发布会结束语本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,…

   本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例



  

   三十二、函数的光滑化技巧

   1、Inf convolution 卷积操作

   Inf convolution 卷积操作适应于凸函数,Inf convolution 卷积操作的目标是把不光滑的凸函数进行光滑近似,并使得光滑近似后的函数于原函数尽量吻合

   对于两个凸函数 f 1 f_1 f1 f 2 f_2 f2,它们之间的Inf convolution 卷积操作记为 f 1 □ f 2 f_{1}□ f_{2} f1f2,即找一个 u 1 u_1 u1 u 2 u_2 u2,满足 u 1 u_1 u1+ u 2 u_2 u2= x x x的条件下,使得 f 1 ( u 1 ) + f 2 ( u 2 ) f_{1}(u_{1})+f_{2}(u_{2}) f1(u1)+f2(u2)最大或最小,如下面的第一个表达式所示,由于满足 u 1 u_1 u1+ u 2 u_2 u2= x x x,因此可消去一个u进行简化,简化后的表达式如下面第二个式子所示:

   ( f 1 □ f 2 ) ( x ) = inf ⁡ ( u 1 , u 2 ) ∈ R d × R d { f 1 ( u 1 ) + f 2 ( u 2 ) : u 1 + u 2 = x } ( f 1 □ f 2 ) ( x ) = inf ⁡ u ∈ R d { f 1 ( u ) + f 2 ( x − u ) } \begin{aligned}(f_1□ f_2)(x)&=\inf_{(u_1,u_2)\in\mathbb{R}^d\times\mathbb{R}^d}\{f_1(u_1)+f_2(u_2):u_1+u_2=x\}\\(f_1□ f_2)(x)&=\inf_{u\in\mathbb{R}^d}\{f_1(u)+f_2(x-u)\}\end{aligned} (f1f2)(x)(f1f2)(x)=(u1,u2)Rd×Rdinf{f1(u1)+f2(u2):u1+u2=x}=uRdinf{f1(u)+f2(xu)}

   Inf convolution 卷积具有对称性,即 f 1 □ f 2 = f 2 □ f 1 f_1□ f_2=f_2□ f_1 f1f2=f2f1

   Inf convolution 卷积的几何解释如下图所示,假设我们考虑两个凸函数,一个是常见的绝对值函数 f ( x ) = ∣ x ∣ \color{red}{f(x)=|x|} f(x)=x,另一个是二次函数 g ( x ) = 1 2 x 2 g(x)=\frac12x^2 g(x)=21x2,如下面的第一幅图所示,对这两个函数进行Inf convolution 卷积操作,即将光滑的函数 g ( x ) = 1 2 x 2 g(x)=\frac12x^2 g(x)=21x2的原点不断地在绝对值函数 f ( x ) = ∣ x ∣ \color{red}{f(x)=|x|} f(x)=x上进行移动,依次得到下面的第二幅图和第三幅图,最终得到包络即f函数与g函数的Inf convolution 卷积操作。

在这里插入图片描述

   如果min可以取到的话, e p i ( f □ g ) = e p i ( f ) + e p i ( g ) epi(f□g)=epi(f)+epi(g) epi(fg)=epi(f)+epi(g)

   Inf convolution 卷积操作的原理其实就是拿光滑凸函数的轮廓去把不光滑的地方利用包络给它磨圆


   2、Moreau 包络

   Moreau envelope是Inf convolution 卷积操作的一个特例,即将被卷积函数更改为一个二次函数或者说范数的平方,如下式所示:

   γ f : = f □ ( 1 2 γ ∥ ⋅ ∥ 2 ) ^\gamma f:=f\Box\left(\frac{1}{2\gamma}\|\cdot\|^2\right) γf:=f(2γ12)

   其具体表达式如下式所示:

   γ f ( x ) : = inf ⁡ u ∈ R d { f ( u ) + 1 2 γ ∥ x − u ∥ 2 } ^\gamma f(x):=\inf_{u\in\mathbb{R}^d}\{f(u)+\frac{1}{2\gamma}\left\|x-u\right\|^2\} γf(x):=uRdinf{f(u)+2γ1xu2}

   当一个函数时封闭的凸函数时,inf一定可以取到最小值, γ \gamma γ具有平滑参数的作用, γ \gamma γ越小,平滑后的函数与原函数越接近。

在这里插入图片描述

   下面来看一个Pinball函数的示例,Pinball函数的定义如下

   ℓ s 1 , s 2 ( x ) = { s 1 x if x ≤ 0 s 2 x if x ≥ 0 \ell_{s_1,s_2}(x)=\begin{cases}s_1x&\text{if}x\le0\\s_2x&\text{if}x\ge0\end{cases} s1,s2(x)={s1xs2xifx0ifx0

   其中, s 1 ≤ 0 ≤ s 2 s_1\leq0\leq s_2 s10s2,Pinball函数的Moreau 包络函数如下所示

   γ f ( x ) = ( f □ g ) ( x ) = = { s 1 x − γ s 1 2 2 , if  x < s 1 1 2 γ x 2 , if  x ∈ [ γ s 1 , γ s 2 ] s 2 x − γ s 2 2 2 , if  x > s 2 \gamma f(x)=(f\Box g)(x)==\quad\begin{cases}s_1x-\gamma\frac{s_1^2}{2},&\text{if }x<s_1\\\frac{1}{2\gamma}x^2,&\text{if }x\in[\gamma s_1,\gamma s_2]\\s_2x-\gamma\frac{s_2^2}{2},&\text{if }x>s_2\end{cases} γf(x)=(fg)(x)== s1xγ2s12,2γ1x2,s2xγ2s22,if x<s1if x[γs1,γs2]if x>s2

   一个经典的例子是Huber函数 ℓ − 1 , 1 \ell_{-1,1} 1,1,即 s 1 s_1 s1取-1, s 2 s_2 s2取1

在这里插入图片描述

   相关证明如下:

在这里插入图片描述

   当我们不断地把 γ \gamma γ值减小,平滑后的函数与原函数也更加接近,包络的下边缘也会越来越尖,如下图所示:

在这里插入图片描述

   Moreau 包络具有一个良好的性质,即一个函数与它的Moreau 包络函数的最小值相同,即

   ∀ γ > 0 , inf ⁡ x ( ( γ f ) ( x ) ) = inf ⁡ x f ( x ) \forall\gamma>0,\quad\inf_x\left((^\gamma f)(x)\right)=\inf_xf(x) γ>0,xinf((γf)(x))=xinff(x)

   证明过程如下:

   inf ⁡ x ( ( γ f ) ( x ) ) = inf ⁡ x inf ⁡ y { f ( y ) + 1 2 γ ∥ x − y ∥ 2 } = inf ⁡ y inf ⁡ x { f ( y ) + 1 2 γ ∥ x − y ∥ 2 } = inf ⁡ y f ( y ) \begin{aligned} \operatorname*{inf}_{x}\left((^{\gamma}f)(x)\right)& =\inf_x\inf_y\left\{f(y)+\frac1{2\gamma}\left\|x-y\right\|^2\right\} \\ &=\inf_y\inf_x\left\{f(y)+\frac{1}{2\gamma}\left\|x-y\right\|^2\right\} \\ &=\inf_{y}f(y) \end{aligned} xinf((γf)(x))=xinfyinf{f(y)+2γ1xy2}=yinfxinf{f(y)+2γ1xy2}=yinff(y)

在这里插入图片描述


   总结一下,用Inf convolution 卷积操作可以对一个不光滑的凸函数进行平滑,平滑后的函数与原函数具有同样的最小值,给一个光滑因子 γ \gamma γ用来调节光滑程度,我们把不光滑的凸函数 f f f的光滑近似记作 ω γ f _{\omega}^{\gamma}f ωγf ω \omega ω是我们用来光滑 f f f的被卷积的函数, ω \omega ω 1 2 ∥ ⋅ ∥ 2 \frac{1}{2}\|\cdot\|^2 212时,就是Moreau 包络

在这里插入图片描述

   假设,我们用 g ( x ) = 1 2 x 2 + 1 2 g(x)=\frac12x^2+\frac12 g(x)=21x2+21来作为被卷积的函数,把 g ( x ) g(x) g(x)的原点挪动一遍后,形成的包络如下图所示,我们可以改变 g ( x ) g(x) g(x)来获得不同的效果。

在这里插入图片描述

   Inf-conv卷积是平滑凸函数的一种常用方法。它可以处理Moreau 包络或者Nesterov 平滑无法处理的问题。

在这里插入图片描述


   3、Mollifier-Conv

   Mollifier卷积是比Inf-conv卷积更一般化的卷积,举一个例子,对于如式所示的函数,它是通过 e − 1 1 − x 2 e^\frac{-1}{1-x^2} e1x21变化而来的,除以其自身的积分相当于进行了缩放操作,这样一个凸起的或者说隆起的函数就称为Mollifier

   φ ( x ) = { e − 1 / ( 1 − x 2 ) ∫ − 1 1 e − 1 / ( 1 − s 2 ) d s i f ∣ x ∣ < 1 0 i f ∣ x ∣ ≥ 1 \varphi(x)=\begin{cases}\frac{e^{-1/(1-x^2)}}{\int_{-1}^1e^{-1/(1-s^2)}\mathrm{d}s}&\mathrm{~if~}|x|<1\\0&\mathrm{~if~}|x|\geq1&\end{cases} φ(x)= 11e1/(1s2)dse1/(1x2)0 if x<1 if x1

在这里插入图片描述

   更一般的,取 φ ϵ ( x ) : = 1 ϵ φ ( x ϵ ) \varphi_\epsilon(x):=\frac1\epsilon\varphi(\frac x\epsilon) φϵ(x):=ϵ1φ(ϵx),将该函数与下面右图中红色曲线所示的函数进行卷积 f ϵ ( x ) : = ∫ − ∞ + ∞ f ( x + z ) φ ϵ ( z ) d z f_\epsilon(x):=\int_{-\infty}^{+\infty}f(x+z)\varphi_\epsilon(z)dz fϵ(x):=+f(x+z)φϵ(z)dz,得到了下面右图中的蓝色曲线,其中 ϵ \epsilon ϵ用于调节光滑效果, ϵ \epsilon ϵ越小光滑效果越差,越接近于原函数。

在这里插入图片描述

   下图中给出了一个二维的例子,在一维的基础上进行了推广

   φ ( x ) = { e − 1 / ( 1 − ∥ x ∥ 2 ) ∫ R n e − 1 / ( 1 − ∥ s ∥ 2 ) d s i f ∥ x ∥ < 1 0 i f ∥ x ∥ ≥ 1 \varphi(x)=\begin{cases}\frac{e^{-1/(1-\|x\|^2)}}{\int_{\mathbb{R}^n}e^{-1/(1-\|s\|^2)}\mathrm{d}s}&\mathrm{~if~}\|x\|<1\\0&\mathrm{~if~}\|x\|\geq1&\end{cases} φ(x)= Rne1/(1s2)dse1/(1x2)0 if x<1 if x1

在这里插入图片描述

   φ ϵ ( x ) : = 1 ϵ n φ ( x ϵ ) f ϵ ( x ) : = ∫ − ∞ + ∞ f ( x + z ) φ ϵ ( z ) d z \begin{gathered}\varphi_\epsilon(x):=\frac1{\epsilon^n}\varphi\Big(\frac x\epsilon\Big)\\\\f_\epsilon(x):=\int_{-\infty}^{+\infty}f(x+z)\varphi_\epsilon(z)dz\end{gathered} φϵ(x):=ϵn1φ(ϵx)fϵ(x):=+f(x+z)φϵ(z)dz

在这里插入图片描述

   Mollifier的具体定义如下所示,其满足积分为1,且当 ϵ \epsilon ϵ趋于0的时候, φ ( x ) \varphi(x) φ(x)趋于冲激函数 δ ( x ) \delta(x) δ(x),只要满足这两个条件都可以称为Mollifier

   ∫ R n φ ( x ) d x = 1 lim ⁡ ϵ → 0 φ ϵ ( x ) = lim ⁡ ϵ → 0 ϵ − n φ ( x / ϵ ) = δ ( x ) \begin{aligned}&\int_{\mathbb{R}^n}\varphi(x)\mathrm{d}x=1\\&\lim_{\epsilon\to0}\varphi_\epsilon(x)=\lim_{\epsilon\to0}\epsilon^{-n}\varphi(x/\epsilon)=\delta(x)\end{aligned} Rnφ(x)dx=1ϵ0limφϵ(x)=ϵ0limϵnφ(x/ϵ)=δ(x)

   下面进行简单的推导,为什么使用Mollifier函数进行卷积操作,可对原函数进行平滑处理

   d d x f ϵ ( x ) = d d x ∫ f ( x + z ) φ ϵ ( z ) d z = d d x ∫ f ( y ) φ ϵ ( y − x ) d y = ∫ f ( y ) ( d d x φ ϵ ( y − x ) ) d y \begin{aligned} \frac d{dx}f_\epsilon(x)& =\frac d{dx}\int f(x+z)\varphi_\epsilon(z)\mathrm{d}z \\ &=\frac d{dx}\int f(y)\varphi_\epsilon(y-x)dy \\ &=\int f(y)\left(\frac d{dx}\varphi_\epsilon(y-x)\right)dy \end{aligned} dxdfϵ(x)=dxdf(x+z)φϵ(z)dz=dxdf(y)φϵ(yx)dy=f(y)(dxdφϵ(yx))dy

   即若Mollifier函数是处处连续可微的,则对某个函数进行Mollifier卷积操作后得到的函数也是处处连续可微的,

   在下面的例子中,Mollifier函数取为 φ ( x ) = 1 e x + e − x + 2 \varphi(x)=\frac1{e^x+e^{-x}+2} φ(x)=ex+ex+21,原函数为 f ( x ) = max ⁡ ( x , 0 ) f(x)=\max(x,0) f(x)=max(x,0),则进行Mollifier卷积后的函数变为下式:

   f ϵ ( x ) = ∫ − ∞ + ∞ max ⁡ ( x + z , 0 ) φ ϵ ( z ) d x = ϵ ln ⁡ ( 1 + e x / ϵ ) f_\epsilon(x)=\int_{-\infty}^{+\infty}\max(x+z,0)\varphi_\epsilon(z)\mathrm{d}x=\epsilon\ln(1+e^{x/\epsilon}) fϵ(x)=+max(x+z,0)φϵ(z)dx=ϵln(1+ex/ϵ)

   Mollifier卷积后的效果如下面的右图所示:

在这里插入图片描述

   我们知道 max ⁡ ( x 1 , x 2 ) \max(x_1,x_2) max(x1,x2)等价于 x 1 + max ⁡ ( x 2 − x 1 , 0 ) x_1+\max(x_2-x_1,0) x1+max(x2x1,0),代入上面的表达式,我们可以进一步得到原函数为 max ⁡ ( x 1 , x 2 ) \max(x_1,x_2) max(x1,x2)时,Mollifier卷积后的结果为 ϵ ln ⁡ ( e x 1 / ϵ + e x 2 / ϵ ) \epsilon\ln(e^{x_1/\epsilon}+e^{x_2/\epsilon}) ϵln(ex1/ϵ+ex2/ϵ),同理可推广到多个值取max的情况,如下所示:

   max ⁡ ( x 1 , x 2 ) = x 1 + max ⁡ ( x 2 − x 1 , 0 ) ⟷ x 1 + f ϵ ( x 2 − x 1 ) = ϵ ln ⁡ ( e x 1 / ϵ + e x 2 / ϵ ) max ⁡ ( x 1 , … , x n − 1 , x n ) = max ⁡ ( x n , max ⁡ ( x 1 , … , x n − 1 ) ) ⟷ ϵ ln ⁡ ∑ i = 1 n e x i / ϵ l o g ⋅ s u m ⋅ e α p \begin{aligned}\max(x_1,x_2)&=x_1+\max(x_2-x_1,0)\quad\longleftrightarrow\quad&x_1+f_\epsilon(x_2-x_1)=\epsilon\ln(e^{x_1/\epsilon}+e^{x_2/\epsilon})\\\max(x_1,\ldots,x_{n-1},x_n)&=\max(x_n,\max(x_1,\ldots,x_{n-1}))\quad\longleftrightarrow\quad&\epsilon\ln\sum_{i=1}^ne^{x_i/\epsilon\quad\mathsf{log}\cdot\mathsf{sum}\cdot\mathsf{e}\alpha\mathbf{p}}\end{aligned} max(x1,x2)max(x1,,xn1,xn)=x1+max(x2x1,0)=max(xn,max(x1,,xn1))x1+fϵ(x2x1)=ϵln(ex1/ϵ+ex2/ϵ)ϵlni=1nexi/ϵlogsumeαp

在这里插入图片描述

   ϵ \epsilon ϵ取1时, max ⁡ { x 1 , … , x k } \max\{x_1,\ldots,x_k\} max{x1,,xk}函数经过Mollifier卷积处理后的示意图如下所示:

在这里插入图片描述

   所以, f ( x ) : = log ⁡ ( ∑ k = 1 n exp ⁡ x k ) f(x):=\log\left(\sum_{k=1}^n\exp x_k\right) f(x):=log(k=1nexpxk)可以被视为光滑的max函数的替代品,在工程中很常用。


   若我们将Mollifier函数更改为 φ ( x ) = 2 ( x 2 + 4 ) 3 / 2 \color{red}{\varphi(x)=\frac2{(x^2+4)^{3/2}}} φ(x)=(x2+4)3/22,原函数为 f ( x ) = max ⁡ ( x , 0 ) f(x)=\max(x,0) f(x)=max(x,0),则进行Mollifier卷积后的函数变为下式,这个函数也被称为CHKS函数,常用作光滑化的max 函数来对max函数进行替代。

   f ϵ ( x ) = ∫ − ∞ + ∞ max ⁡ ( x + z , 0 ) φ ϵ ( z ) d x = x + x 2 + 4 ϵ 2 2 f_\epsilon(x)=\int_{-\infty}^{+\infty}\max(x+z,0)\varphi_\epsilon(z)\mathrm{d}x=\frac{x+\sqrt{x^2+4\epsilon^2}}2 fϵ(x)=+max(x+z,0)φϵ(z)dx=2x+x2+4ϵ2

在这里插入图片描述


   下面给出了一个Weierstrass变换的例子,Weierstrass变换是连续版本的高斯模糊,他也可以得到光滑的函数

在这里插入图片描述


   下面给出了一个采用分段光滑的例子

   F μ ( x ) = { 0 i f x ≤ 0 ( μ − x / 2 ) ( x / μ ) 3 i f 0 < x < μ x − μ / 2 i f x ≥ μ F_\mu(x)=\begin{cases}0&\mathrm{~if~}x\leq0\\(\mu-x/2)(x/\mu)^3&\mathrm{~if~}0<x<\mu\\x-\mu/2&\mathrm{~if~}x\geq\mu&\end{cases} Fμ(x)= 0(μx/2)(x/μ)3xμ/2 if x0 if 0<x<μ if xμ

在这里插入图片描述



   参考资料:

   1、数值最优化方法(高立 编著)

   2、机器人中的数值优化



文章转载自:
http://perpendicularly.fcxt.cn
http://limb.fcxt.cn
http://retrojection.fcxt.cn
http://litteratim.fcxt.cn
http://matt.fcxt.cn
http://unscanned.fcxt.cn
http://instrument.fcxt.cn
http://theanthropic.fcxt.cn
http://lustful.fcxt.cn
http://grounded.fcxt.cn
http://upflow.fcxt.cn
http://bedim.fcxt.cn
http://taxaceous.fcxt.cn
http://whitlow.fcxt.cn
http://yegg.fcxt.cn
http://laith.fcxt.cn
http://jocularity.fcxt.cn
http://plutocratic.fcxt.cn
http://superfix.fcxt.cn
http://glottalize.fcxt.cn
http://culm.fcxt.cn
http://ragazza.fcxt.cn
http://moluccas.fcxt.cn
http://nidificate.fcxt.cn
http://xenial.fcxt.cn
http://virile.fcxt.cn
http://linac.fcxt.cn
http://verruculose.fcxt.cn
http://platycephaly.fcxt.cn
http://nonetheless.fcxt.cn
http://rhachis.fcxt.cn
http://mesoglea.fcxt.cn
http://rsp.fcxt.cn
http://jokul.fcxt.cn
http://khansu.fcxt.cn
http://saccate.fcxt.cn
http://james.fcxt.cn
http://unitrust.fcxt.cn
http://infector.fcxt.cn
http://chuckawalla.fcxt.cn
http://leningrad.fcxt.cn
http://maunder.fcxt.cn
http://sabrecut.fcxt.cn
http://astasia.fcxt.cn
http://intense.fcxt.cn
http://laboursome.fcxt.cn
http://infallibly.fcxt.cn
http://omniscient.fcxt.cn
http://overlade.fcxt.cn
http://languette.fcxt.cn
http://naevoid.fcxt.cn
http://momentary.fcxt.cn
http://skysweeper.fcxt.cn
http://misally.fcxt.cn
http://senator.fcxt.cn
http://anglistics.fcxt.cn
http://overabundance.fcxt.cn
http://catladder.fcxt.cn
http://inculpatory.fcxt.cn
http://anthropometric.fcxt.cn
http://expatriation.fcxt.cn
http://mzungu.fcxt.cn
http://definitude.fcxt.cn
http://ambatch.fcxt.cn
http://haymaker.fcxt.cn
http://castroism.fcxt.cn
http://fetial.fcxt.cn
http://derby.fcxt.cn
http://gelatification.fcxt.cn
http://nif.fcxt.cn
http://touchable.fcxt.cn
http://urbanist.fcxt.cn
http://chloralism.fcxt.cn
http://indictment.fcxt.cn
http://nabob.fcxt.cn
http://schnockered.fcxt.cn
http://tactic.fcxt.cn
http://theogony.fcxt.cn
http://wasting.fcxt.cn
http://antinuclear.fcxt.cn
http://interleaved.fcxt.cn
http://borrow.fcxt.cn
http://aristo.fcxt.cn
http://macaroon.fcxt.cn
http://mescal.fcxt.cn
http://ionization.fcxt.cn
http://measureless.fcxt.cn
http://heifer.fcxt.cn
http://sclerotioid.fcxt.cn
http://castrametation.fcxt.cn
http://dishclout.fcxt.cn
http://clammily.fcxt.cn
http://undogmatic.fcxt.cn
http://photodrama.fcxt.cn
http://backflow.fcxt.cn
http://westernmost.fcxt.cn
http://deliriant.fcxt.cn
http://solfege.fcxt.cn
http://inoculable.fcxt.cn
http://cumshaw.fcxt.cn
http://www.hrbkazy.com/news/78361.html

相关文章:

  • 做网站15年关键词排名顾问
  • 孝感做招聘信息的网站厦门seo公司到1火星
  • 物流行业网站建设方案seo云优化平台
  • 按f12复制代码可以做网站吗编写网页的软件
  • 业务办理网站建设方案四川seo推广方案
  • 做网站公司logo房地产销售
  • 政府网站建设实施方案电商数据分析
  • html代码做的网站天津搜狗seo推广
  • 西安网站建设公武汉百度开户代理
  • 税务 网站建设 重视seo关键词排名优化报价
  • 网站正在建设中图片网络seo关键词优化技巧
  • 张家口网站建设班级优化大师下载安装最新版
  • 网站哪些功能是PHP做的汕头网站建设方案开发
  • 网销怎么销售的澳门seo关键词排名
  • 做商品网站近期出现的病毒叫什么
  • 网站备案到公司网络广告的特点
  • 做服务员哪个网站靠谱搜索关键词热度
  • js网站访问计数百度竞价最低点击一次多少钱
  • 莆田seo推广公司hyein seo
  • 哔哩哔哩网站怎么做视频樱桃bt磁力天堂
  • 中国建设银行个人网站最新足球赛事
  • 在线中文字日产幕免费在线下载班级优化大师app
  • 有flash的网站朋友圈网络营销
  • 河北省住房与城乡建设厅网站新浪体育最新消息
  • 西安网站建设网晨雨百度seo霸屏软件
  • golang 网站开发 开源seo优化便宜
  • 北京高端网站建设淘宝营销推广方案
  • 免费空间搭建免费小说网站seo网站优化方案案例
  • 传播公司可以做门户网站吗网页设计软件dreamweaver
  • 网站开发选什么职位seo排名赚靠谱吗