当前位置: 首页 > news >正文

做网站如何可以实现窗口切换功能专业软文发布平台

做网站如何可以实现窗口切换功能,专业软文发布平台,软件详细设计文档模板,鲅鱼圈网站在哪做一、四个子空间的正交性 如果两个向量的点积为零,则两个向量正交: v ⋅ w v T w 0 \boldsymbol v\cdot\boldsymbol w\boldsymbol v^T\boldsymbol w0 v⋅wvTw0。本章着眼于正交子空间、正交基和正交矩阵。两个子空间的中的向量,一组基中的向…

一、四个子空间的正交性

如果两个向量的点积为零,则两个向量正交: v ⋅ w = v T w = 0 \boldsymbol v\cdot\boldsymbol w=\boldsymbol v^T\boldsymbol w=0 vw=vTw=0。本章着眼于正交子空间正交基正交矩阵。两个子空间的中的向量,一组基中的向量和 Q Q Q 中的列向量,它们所有的配对向量都是正交的。对于直角三角形有 a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2,两条直角边分别是 v \boldsymbol v v w \boldsymbol w w

正交向量 v T w = 0 且 ∣ ∣ v ∣ ∣ 2 + ∣ ∣ w ∣ ∣ 2 = ∣ ∣ v − w ∣ ∣ 2 \pmb{正交向量}\kern 35pt\boldsymbol v^T\boldsymbol w=0\,且\,||\boldsymbol v||^2+||\boldsymbol w||^2=||\boldsymbol v-\boldsymbol w||^2 正交向量vTw=0∣∣v2+∣∣w2=∣∣vw2

v T w = w T v = 0 \boldsymbol v^T\boldsymbol w=\boldsymbol w^T\boldsymbol v=0 vTw=wTv=0 时,右边 ( v + w ) T ( v − w ) = v T v + w T w (\boldsymbol v+\boldsymbol w)^T(\boldsymbol v-\boldsymbol w)=\boldsymbol v^T\boldsymbol v+\boldsymbol w^T\boldsymbol w (v+w)T(vw)=vTv+wTw
第三章我们主要是讨论 A x = b A\boldsymbol x=\boldsymbol b Ax=b,我们需要列空间和零空间,然后视线转到 A T A^T AT,会需要另外两个子空间。这四个基本子空间揭示了矩阵实际上在做什么。
矩阵乘向量: A A A x \boldsymbol x x:第一层只有数字;第二层 A x A\boldsymbol x Ax 表示的是列向量的组合;第三层展示了子空间。在学习 Figure4.2 的大图之后,我们将看到它的全貌。
将子空间放在一起可以显示出 A A A x \boldsymbol x x 隐藏的一些事实,两个子空间之间的 90 ° 90° 90° 角就是我们将要讨论的新的主题。
行空间垂直于零空间 A A A 的每一行垂直于 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 的每一个解。得到 Figure 4.2 左侧的 90 ° 90° 90° 角。子空间的垂直性是线性代数基本定理的第二部分。
列空间垂直于 A T A^T AT 的零空间。当 b \boldsymbol b b 不在列空间中,此时将无法求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b,那么 A T A^T AT 的零空间将展现出它的优势。它包含有 “最小二乘” 解法的误差 e = b − A x \boldsymbol e=\boldsymbol b-A\boldsymbol x e=bAx。最小二乘法是线性代数在本章的关键应用。
线性代数基本定理的第一部分给出了子空间的维度。行空间与列空间有相同的维度 r r r,剩下两个零空间的维度分别是 n − r n-r nr m − r m-r mr。现在我们将证明行空间与零空间是 R n R^n Rn 中的正交子空间
定义 \kern 10pt 如果向量空间中的两个子空间 V \boldsymbol V V W \boldsymbol W W 有:任意 V \boldsymbol V V 中的向量 v \boldsymbol v v 和任意 W \boldsymbol W W 中的向量 w \boldsymbol w w 都垂直,则 V \boldsymbol V V W \boldsymbol W W 正交:

正交子空间 对于所有 V 中的向量 v 和所有 W 中的向量 w 都有 v T w = 0 \pmb{正交子空间}\kern 30pt对于所有\,\boldsymbol V\,中的向量 \,\boldsymbol v\,和所有\,\boldsymbol W\,中的向量\,\boldsymbol w\,都有\,\boldsymbol v^T\boldsymbol w=0 正交子空间对于所有V中的向量v和所有W中的向量w都有vTw=0

例1】房间中的地板(延伸到无限远)是一个子空间 V \boldsymbol V V,两面墙的交线是一个子空间 W \boldsymbol W W(一维)。这两个子空间是正交的。两面墙交线上的每个向量与地板上的每个向量都垂直。
例2】两面墙看起来垂直,但是这两个子空间不是正交的!它们的交线同时位于 V \boldsymbol V V W \boldsymbol W W,这条交线与它自身并不垂直。两个平面( R 3 \pmb{\textrm R}^3 R3 中的两个 2 2 2 维平面)不可能是正交的子空间。
当一个向量同时存在于两个正交的子空间中,那么它一定是零向量,它垂直于它本身,即是 v \boldsymbol v v 也是 w \boldsymbol w w,所以有 v T v = 0 \boldsymbol v^T\boldsymbol v=0 vTv=0,它只能是零向量。

在这里插入图片描述
线性代数的重要例子来源于四个基本子空间。零是零空间与行空间的唯一交点,此外, A A A 的零空间与行空间是 90 ° 90° 90° 相交。我们可以直接从 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 得到这个关键事实:

因为 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,所以有 A A A 零空间中的每个向量 x \boldsymbol x x 垂直于 A A A 的每一行。零空间 N ( A ) \pmb N(A) N(A) 和行空间 C ( A T ) \pmb C(A^T) C(AT) R n \pmb {\textrm R}^n Rn 中的正交子空间

为什么 x \boldsymbol x x 与这些行垂直呢,看 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,每行乘 x \boldsymbol x x

A x = [ row 1 ⋮ row m ] [ x ] = [ 0 ⋮ 0 ] ← ( row 1 ) ⋅ x 是零 ← ( row m ) ⋅ x 是零 ( 4.1.1 ) A\boldsymbol x=\begin{bmatrix}\pmb{\textrm{row\,\,1}}\\\vdots\\{\pmb{\textrm{row}\,\,m}}\end{bmatrix}\begin{bmatrix}\,\\\boldsymbol x\\\,\end{bmatrix}=\begin{bmatrix}0\\\vdots\\0\end{bmatrix}\kern 10pt\begin{matrix}\leftarrow&(\pmb{\textrm{row\,\,1}})\cdot\boldsymbol x\,是零\\\,\\\leftarrow&(\pmb{\textrm{row}\,\,m})\cdot\boldsymbol x\,是零\end{matrix}\kern 25pt(4.1.1) Ax= row1rowm x = 00 (row1)x是零(rowm)x是零(4.1.1)

第一个方程表明行 1 1 1 垂直于 x \boldsymbol x x,最后一个方程表明行 m m m 垂直于 x \boldsymbol x x。每一行与 x \boldsymbol x x 的点积都是零,则 x \boldsymbol x x 也垂直于行的每种组合。整个行空间 C ( A T ) \pmb C(A^T) C(AT) 与零空间 N ( A ) \pmb N(A) N(A) 正交。
第二种证明正交的方式使用矩阵的缩写:行空间的向量就是行的线性组合 A T y A^T\boldsymbol y ATy,做 A T y A^T\boldsymbol y ATy 与零空间任意向量 x \boldsymbol x x 的点积,可以得到这些向量是垂直的: 零空间与行空间正交 x T ( A T y ) = ( A x ) T y = 0 T y = 0 ( 4.1.2 ) \pmb{零空间与行空间正交}\kern 15pt\boldsymbol x^T(A^T\boldsymbol y)=(A\boldsymbol x)^T\boldsymbol y=\boldsymbol 0^T\boldsymbol y=0\kern 20pt(4.1.2) 零空间与行空间正交xT(ATy)=(Ax)Ty=0Ty=0(4.1.2)第一个证明很直观,从方程(4.1.1)中可以直接看到 A A A 的这些行乘 x \boldsymbol x x 得到零。第二个证明表示了为什么 A A A A T A^T AT 都在基础定理中。

例3 A A A 的行垂直于零空间中的向量 x = ( 1 , 1 , − 1 ) \boldsymbol x=(1,1,-1) x=(1,1,1) A x = [ 1 3 4 5 2 7 ] [ 1 1 − 1 ] = [ 0 0 ] 得点积 1 + 3 − 4 = 0 5 + 2 − 7 = 0 A\boldsymbol x=\begin{bmatrix}1&3&4\\5&2&7\end{bmatrix}\begin{bmatrix}\kern 7pt1\\\kern 7pt1\\-1\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\kern 10pt得点积\kern 5pt\begin{matrix}1+3-4=0\\5+2-7=0\end{matrix} Ax=[153247] 111 =[00]得点积1+34=05+27=0现在我们将实现转向另外两个子空间。此例中,列空间是整个 R 2 \boldsymbol {\textrm R}^2 R2 A T A^T AT 的零空间只有零向量(与任意向量正交)。 A A A 的列空间和 A T A^T AT 的零空间总是正交的子空间。

A T A^T AT 零空间中的每个向量 y \boldsymbol y y 垂直于 A A A 的每一列。左零空间 N ( A T ) \pmb N(A^T) N(AT) 和列空间 C ( A ) \pmb C(A) C(A) R m \textrm{\textrm R}^m Rm 中的正交子空间

因为 A T A^T AT 的零空间与 A T A^T AT 的行空间正交,而 A T A^T AT 的零空间就是 A A A 的左零空间, A T A^T AT 的行空间就是 A A A 的列空间。证毕!
A T y = 0 A^T\boldsymbol y=\boldsymbol 0 ATy=0 可以得到一个可视化的证明。 A A A 的每一列乘 y \boldsymbol y y 都得到 0 0 0 C ( A ) ⊥ N ( A T ) A T y = [ ( column 1 ) T ⋯ ( column n ) T ] [ y ] = [ 0 ˙ 0 ] ( 4.2.3 ) \pmb C(A)\perp \pmb N(A^T)\kern 15ptA^T\boldsymbol y=\begin{bmatrix}(\pmb{\textrm{column}\,\,1})^T\\\cdots\\(\pmb{\textrm{column}\,\,n})^T\end{bmatrix}\begin{bmatrix}\\\boldsymbol y\\\,\end{bmatrix}=\begin{bmatrix}0\\\dot\ \\0\end{bmatrix}\kern 25pt(4.2.3) C(A)N(AT)ATy= (column1)T(columnn)T y = 0 ˙0 (4.2.3) y \boldsymbol y y A A A 的每一列点积都是零,则有 A A A 左零空间中的向量 y \boldsymbol y y 垂直于 A A A 的每一列,即垂直于列空间。
在这里插入图片描述

二、正交补

重要: 基本子空间不仅仅是正交(成对)而已,它们也要有合适的维度。两条直线可能在 R 3 \textrm{\pmb R}^3 R3 空间中垂直,但是这些直线不可能是 3 × 3 3\times3 3×3 矩阵的行空间和零空间。这两天直线的维度都是 1 1 1,相加起来是 2 2 2,但是正确的维度 r r r n − r n-r nr 加起来一定是 n = 3 n=3 n=3
3 × 3 3\times3 3×3 矩阵的基本子空间的维度可能是 2 2 2 1 1 1,或 3 3 3 0 0 0,这些成对的子空间不仅仅是正交,它们是正交补。
定义: 子空间 V \pmb V V正交补包含所有 V \pmb V V 垂直的向量。这个子空间的正交补写成 V ⊥ \pmb V^{\perp} V(读作 “ V \pmb V V perp”)。
根据这个定义,零空间是行空间的正交补,每个垂直于所有行的向量 x \boldsymbol x x 都满足 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,它也在零空间中。
反过来也是正确的,如果 v \boldsymbol v v 与零空间正交,它一定在行空间中。否则我们可以将 v \boldsymbol v v 加入矩阵当做额外的一行,这样没有改变它的零空间,但是行空间会变大,将违反 r + ( n − r ) = n r+(n-r)=n r+(nr)=n 的法则。结论是零空间的正交补 N ( A ) ⊥ \pmb N(A)^{\perp} N(A) 就是行空间 C ( A T ) \pmb C(A^T) C(AT)
同样的方法,左零空间和列空间是 R m \pmb{\textrm R}^m Rm 的正交补。它们的维度 r r r m − r m-r mr 加起来得到全维度 m m m

线性代数基本定理,第二部分 N ( A ) 是行空间 C ( A T ) 的正交补 ( 在 R n 中 ) N ( A T ) 是列空间 C ( A ) 的正交补 ( 在 R m 中 ) \pmb{线性代数基本定理,第二部分}\\{\pmb N(A)\,\pmb{是行空间}\,\pmb C(A^T)\,\pmb{的正交补(在}\,\textrm{\pmb{R}}^n\,\pmb{中)}}\\\pmb N(A^T)\,\pmb{是列空间}\,\pmb C(A)\,\pmb{的正交补(在}\,\textrm{\pmb R}^m\,\pmb{中)} 线性代数基本定理,第二部分N(A)是行空间C(AT)的正交补(Rn)N(AT)是列空间C(A)的正交补(Rm)

第一部分给出了子空间的维度,第二部分给出了它们之间的 90 ° 90° 90° 角。补充的重点是每一个 x \boldsymbol x x 都可以分成一个行空间分量 x r \boldsymbol x_r xr 和一个零空间分量 x n \boldsymbol x_n xn。Figure 4.3 显示了当 A A A x = x r + x n \boldsymbol x=\boldsymbol x_r+\boldsymbol x_n x=xr+xn 时发生了什么 A x = A x r + A x n A\boldsymbol x=A\boldsymbol x_r+A\boldsymbol x_n Ax=Axr+Axn 零空间的分量得到零: A x n = 0 行空间的分量到列空间: A x r = A x 零空间的分量得到零:A\boldsymbol x_n=\boldsymbol 0\\行空间的分量到列空间:A\boldsymbol x_r=A\boldsymbol x 零空间的分量得到零:Axn=0行空间的分量到列空间:Axr=Ax每个向量都到列空间!左乘 A A A 不会做其它的事情,除此之外,列空间的每个向量 b \boldsymbol b b 仅来自一个行空间的唯一向量 x r \boldsymbol x_r xr。证明:如果 A x r = A x r ′ A\boldsymbol x_r=A\boldsymbol x_r' Axr=Axr,它们的差 x r − x r ′ \boldsymbol x_r-\boldsymbol x_r' xrxr 在零空间中,也会在行空间中,因为 x r \boldsymbol x_r xr x r ′ \boldsymbol x_r' xr 都来自与行空间。它们的差必定为零,因为零空间与行空间是垂直的,因此 x r = x r ′ \boldsymbol x_r=\boldsymbol x_r' xr=xr
如果我们抛开两个零空间,则 A A A 中会隐藏有一个 r × r r\times r r×r 的可逆矩阵,从行空间到列空间, A A A 是可逆的
例4】每个秩 r r r 的矩阵都有一个 r × r r\times r r×r 的可逆子矩阵: A = [ 3 0 0 0 0 0 5 0 0 0 0 0 0 0 0 ] 包含子矩阵 [ 3 0 0 5 ] A=\begin{bmatrix}3&0&0&0&0\\0&5&0&0&0\\0&0&0&0&0\end{bmatrix}\kern 5pt包含子矩阵\kern 5pt\begin{bmatrix}3&0\\0&5\end{bmatrix} A= 300050000000000 包含子矩阵[3005]另外 11 11 11 0 0 0 是负责零空间的。 B B B 的秩也为 r = 2 r=2 r=2 B = [ 1 2 3 4 5 1 2 4 5 6 1 2 4 5 6 ] 包含子矩阵 [ 1 3 1 4 ] 在主元行和主元列 B=\begin{bmatrix}1&2&3&4&5\\1&2&4&5&6\\1&2&4&5&6\end{bmatrix}\kern 5pt包含子矩阵\kern 5pt\begin{bmatrix}1&3\\1&4\end{bmatrix}在主元行和主元列 B= 111222344455566 包含子矩阵[1134]在主元行和主元列当我们选择了正确的 R n \pmb {\textrm R}^n Rn R m \textrm {\pmb R}^m Rm 的基,每个矩阵都可以对角化。这个奇异值分解(Singular Value Decomposition)在应用中已经非常重要。
我们重复下一个事实, A A A 的行不可能在 A A A 的零空间中(除了零向量)。唯一都存在于两个正交子空间的向量是零向量。 如果向量 v 正交于它本身,则 v 是零向量。 \pmb{如果向量\,\boldsymbol v\,正交于它本身,则\,\boldsymbol v\,是零向量。} 如果向量v正交于它本身,则v是零向量。在这里插入图片描述

三、画出大图

大图要显示出这些子空间的正交性。Figure4.4是一条直线与一个平面的正交图,它们是在三维空间中。
在这里插入图片描述

四、从子空间中组合基

基是线性无关的向量,它们可以张成向量空间。正常情况下对于基来说我们要检验以下两个性质,当其中一个成立时是可以退出另外一个的:

R n \pmb{\textrm R}^n Rn 中任意 n n n 个无关向量一定可以张成空间 R n \textrm{\pmb R}^n Rn,因此它们是一组基。
任何可以张成空间 R n \textrm{\pmb R}^n Rn n n n 个向量一定是无关的,所以它们是一组基。

如果向量的数量是正确的,那么基的一个性质可以推出另外一个性质,这对于任何向量空间都是成立的,我们更多关注的是 R n \pmb {\textrm R}^n Rn。当这些向量是 n × n n\times n n×n 方阵 A A A 的列时,我们可得到下面两个事实:

如果 A A A n n n 列是无关的,它们张成 R n \pmb{\textrm R}^n Rn,所以 A x = b A\boldsymbol x=\boldsymbol b Ax=b 有解。
如果这 n n n 个列张成 R n \pmb{\textrm R}^n Rn,则它们是无关的, A x = b A\boldsymbol x=\boldsymbol b Ax=b 有唯一解。

唯一性推论到存在性且存在性推论到唯一性, A A A 是可逆的。如果没有自由变量,则解 x \boldsymbol x x 是唯一的,那么一定有 n n n 个主元列,通过回代可以求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b(解存在)。
从反方向开始,假设 A x = b A\boldsymbol x=\boldsymbol b Ax=b 对于任意的 b \boldsymbol b b 都有解(存在解),那么消元后没有零行,有 n n n 个主元没有自由变量。零空间仅包含 x = 0 \boldsymbol x=\boldsymbol 0 x=0(唯一性)。
对于行空间和零空间的基来说,有 r + ( n − r ) = n r+(n-r)=n r+(nr)=n 个向量,这 n n n 个向量是无关的,它们张成 R n \pmb{\textrm R}^n Rn

每个 x 都是行空间 x r 和零空间 x n 的和 x r + x n 。 每个\,\boldsymbol x\,都是行空间\,\boldsymbol x_r和零空间\,\boldsymbol x_n的和\,\boldsymbol x_r+\boldsymbol x_n。 每个x都是行空间xr和零空间xn的和xr+xn

Figure 4.3 画出了正交补的关键点 —— 它们的维度相加是 n n n,所有的向量都可以通过正交补来解释。

例5 A = [ 1 2 3 6 ] A=\begin{bmatrix}1&2\\3&6\end{bmatrix} A=[1326] x = [ 4 3 ] \boldsymbol x=\begin{bmatrix}4\\3\end{bmatrix} x=[43] 分成 x r + x n = [ 2 4 ] + [ 2 − 1 ] \boldsymbol x_r+\boldsymbol x_n=\begin{bmatrix}2\\4\end{bmatrix}+\begin{bmatrix}\kern 7pt2\\-1\end{bmatrix} xr+xn=[24]+[21]
向量 [ 2 4 ] \begin{bmatrix}2\\4\end{bmatrix} [24] 在行空间,它的正交向量 [ 2 − 1 ] \begin{bmatrix}\kern 7pt2\\-1\end{bmatrix} [21] 在零空间中。

五、主要内容总结

  • 如果 V \boldsymbol V V 中的每个向量 v \boldsymbol v v W \boldsymbol W W 中的每个向量 w \boldsymbol w w 都正交,则子空间 V \boldsymbol V V W \boldsymbol W W 正交。
  • 如果 W \boldsymbol W W 中包含全部垂直于 V \boldsymbol V V 的向量(反之亦然),则 V \boldsymbol V V W \boldsymbol W W 是正交补。在 R n \textrm {\pmb R}^n Rn 中, V \boldsymbol V V W \boldsymbol W W 的维度相加是 n n n
  • 零空间 N ( A ) \pmb N(A) N(A) 和行空间 C ( A T ) \pmb C(A^T) C(AT) 是正交补,维度是 ( n − r ) + r = n (n-r)+r=n (nr)+r=n,相似的,左零空间 N ( A T ) \pmb N(A^T) N(AT) 和列空间 C ( A ) \pmb C(A) C(A) 是正交补,它们的维度是 ( m − r ) + r = m (m-r)+r=m (mr)+r=m
  • R n \textrm{\pmb R}^n Rn 中任意 n n n 个无关的向量可以张成 R n \pmb{\textrm R}^n Rn;任意可以张成 R n \pmb{\textrm R}^n Rn n n n 个向量是无关的。

六、例题

例6】假设 S \pmb S S 是 9 维空间 R 9 \textrm{\pmb R}^9 R9 中的 6 6 6 维子空间:
(a)与 S \pmb S S 正交的子空间的维度可能是多少?
(b) S \pmb S S 的正交补 S ⊥ \pmb S^{\perp} S 的维度可能是多少?
(c)行空间是 S \pmb S S 的矩阵 A A A 可能的最小形状大小是多少?
(d)零空间是 S ⊥ \pmb S^{\perp} S 的矩阵 B B B,它的形状可能的最小大小是多少?
解: (a)如果 S \pmb S S R 9 \textrm{\pmb R}^9 R9 中的 6 6 6 维子空间,那么与 S \pmb S S 正交的子空间的维度可能是 0 , 1 , 2 , 3 0,1,2,3 0,1,2,3
(b)正交补 S ⊥ \pmb S^{\perp} S 是最大的正交子空间,它的维度是 3 3 3
(c)最小的矩阵 A A A 形状是 6 × 9 6\times 9 6×9。(它的 6 6 6 行是 S \pmb S S 的一组基)。
(d)最小的矩阵 B B B 形状是 6 × 9 6\times9 6×9。(与(c)答案一样)
如果 B B B 的新行第 7 7 7 行是 A A A 6 6 6 行的组合,那么 B B B A A A 有相同的行空间,也有相同的零空间。 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 的特殊解 s 1 , s 2 , s 3 \boldsymbol s_1,\boldsymbol s_2,\boldsymbol s_3 s1,s2,s3 同样也是 B x = 0 B\boldsymbol x=\boldsymbol 0 Bx=0 的特殊解。消元后 B B B 的第 7 7 7 行将会变成零行。

例7】方程 x − 3 y − 4 z = 0 x-3y-4z=0 x3y4z=0 描述了 R 3 \textrm {\pmb R}^3 R3 中的一个平面 P \pmb P P(实际上是一个子空间)。
(a)平面 P \pmb P P 是哪个 1 × 3 1\times3 1×3 的矩阵 A A A 的零空间?
(b)找到 x − 3 y − 4 z = 0 x-3y-4z=0 x3y4z=0 特殊解构成的一组基 s 1 , s 2 \boldsymbol s_1,\boldsymbol s_2 s1,s2(它们会是零空间矩阵 N N N 的列)。
(c)找到垂直于 P \pmb P P 的直线 P ⊥ \pmb P^{\perp} P 的一组基。
解:(a) A = [ 1 − 3 − 4 ] A=\begin{bmatrix}1&-3&-4\end{bmatrix} A=[134]
(b) s 1 = [ 3 1 0 ] , s 2 = [ 4 0 1 ] \boldsymbol s_1=\begin{bmatrix}3\\1\\0\end{bmatrix},\kern 5pt\boldsymbol s_2=\begin{bmatrix}4\\0\\1\end{bmatrix} s1= 310 ,s2= 401
(c) [ 1 − 3 − 4 ] \begin{bmatrix}\kern 7pt1\\-3\\-4\end{bmatrix} 134


文章转载自:
http://necrogenic.hkpn.cn
http://bitsy.hkpn.cn
http://purp.hkpn.cn
http://pollinical.hkpn.cn
http://evalina.hkpn.cn
http://aerodyne.hkpn.cn
http://orthographer.hkpn.cn
http://footed.hkpn.cn
http://eschew.hkpn.cn
http://guiyang.hkpn.cn
http://syringes.hkpn.cn
http://bre.hkpn.cn
http://jugoslav.hkpn.cn
http://offlet.hkpn.cn
http://sonagraph.hkpn.cn
http://chaldee.hkpn.cn
http://histoid.hkpn.cn
http://pampero.hkpn.cn
http://imago.hkpn.cn
http://cheryl.hkpn.cn
http://bantling.hkpn.cn
http://martagon.hkpn.cn
http://spend.hkpn.cn
http://precept.hkpn.cn
http://raconteur.hkpn.cn
http://blockader.hkpn.cn
http://entirety.hkpn.cn
http://gefuffle.hkpn.cn
http://lamaist.hkpn.cn
http://nonmagnetic.hkpn.cn
http://deuteranopic.hkpn.cn
http://virial.hkpn.cn
http://attacca.hkpn.cn
http://typed.hkpn.cn
http://designatum.hkpn.cn
http://mesopotamia.hkpn.cn
http://tupelo.hkpn.cn
http://elusively.hkpn.cn
http://clinostat.hkpn.cn
http://busiest.hkpn.cn
http://xanthosiderite.hkpn.cn
http://upas.hkpn.cn
http://dogberry.hkpn.cn
http://bcom.hkpn.cn
http://dermonecrotic.hkpn.cn
http://wrongful.hkpn.cn
http://sailor.hkpn.cn
http://yorkshire.hkpn.cn
http://daunorubicin.hkpn.cn
http://hasidism.hkpn.cn
http://innards.hkpn.cn
http://trial.hkpn.cn
http://synantherous.hkpn.cn
http://flutey.hkpn.cn
http://ethylation.hkpn.cn
http://quaver.hkpn.cn
http://allantoid.hkpn.cn
http://anthropophobia.hkpn.cn
http://atrabilious.hkpn.cn
http://postclassical.hkpn.cn
http://millimicra.hkpn.cn
http://sepal.hkpn.cn
http://swither.hkpn.cn
http://choragus.hkpn.cn
http://christen.hkpn.cn
http://isoclinal.hkpn.cn
http://donkeyman.hkpn.cn
http://pentane.hkpn.cn
http://ministerial.hkpn.cn
http://markhor.hkpn.cn
http://mhl.hkpn.cn
http://luxurious.hkpn.cn
http://anesthesiology.hkpn.cn
http://dowitcher.hkpn.cn
http://barcarole.hkpn.cn
http://abram.hkpn.cn
http://trapeze.hkpn.cn
http://overripe.hkpn.cn
http://synaxis.hkpn.cn
http://zyzzyva.hkpn.cn
http://agapanthus.hkpn.cn
http://windage.hkpn.cn
http://crust.hkpn.cn
http://myriorama.hkpn.cn
http://stratal.hkpn.cn
http://crumple.hkpn.cn
http://aginner.hkpn.cn
http://ophite.hkpn.cn
http://moneymaking.hkpn.cn
http://indication.hkpn.cn
http://abidingly.hkpn.cn
http://quota.hkpn.cn
http://custard.hkpn.cn
http://photopolarimeter.hkpn.cn
http://estrangedness.hkpn.cn
http://interposition.hkpn.cn
http://bather.hkpn.cn
http://attu.hkpn.cn
http://videotelephone.hkpn.cn
http://gadgetize.hkpn.cn
http://www.hrbkazy.com/news/90541.html

相关文章:

  • 品牌网站排名软件2023全民核酸又开始了
  • 株洲定制型网站建设东莞全网营销推广
  • 网站文章页做百度小程序石家庄seo公司
  • 网站的域名是什么意思营销方案ppt
  • 北京营销型网站建站公司网络营销岗位描述的内容
  • 哪些网站的数据库做的好sem是什么意思?
  • 乌鲁木齐网站制作活动营销方案
  • java 网站开发流程如何网络营销
  • 湖北商城网站建设阿里巴巴国际站
  • 找产品做代理都有哪个网站每日舆情信息报送
  • 网站为什么上传不了图片济南疫情最新消息
  • 员工做违法网站腾讯企点官网下载
  • 湖北网站设计制作多少钱搜索引擎营销有哪些方式
  • 宝安网站建设关键词搜索推广排行榜
  • 广州网站关键词优化推广seo 优化教程
  • 办网站需要什么广州网站快速排名优化
  • 网站 后台 数据 下载seo网络营销推广
  • 东莞松山湖天气石家庄百度seo排名
  • 学做网站要懂英语吗百度推广运营这个工作好做吗
  • 简单网站建设论文总结腾讯云1元域名
  • 官网steam搜狗搜索引擎优化
  • magento 网站链接友情网络营销教学网站
  • 短视频网站建设方案seo优化网站网页教学
  • 人个做外贸用什么网站好2023年4月疫情恢复
  • 网站整站开发视频教程游戏优化
  • 上海设计公司排名前十搜索引擎优化的英文
  • mac能用vs做网站吗电商运营的基本流程
  • 美食网站联系我们怎么做百度一下你就知道官网
  • 类似淘宝网站建设费用saas建站平台
  • 装修网名字大全seo站外优化平台