当前位置: 首页 > news >正文

注册资金多少有什么区别抚顺seo

注册资金多少有什么区别,抚顺seo,驻马店广告制作公司,建筑模板使用寿命多久文章目录 分形的重要特征曼德布洛特集合曼德布洛特集合有一个以证明的结论:图像展示np.ogrid[]np.frompyfunc()集合转图像 julia集合 无边的奇迹源自简单规则的无限重复 ---- 分形之父Benoit B.Mandelbrot 分形的重要特征 自相似性无标度性非线性 曼德布洛特集合…

文章目录

  • 分形的重要特征
  • 曼德布洛特集合
    • 曼德布洛特集合有一个以证明的结论:
    • 图像展示
      • np.ogrid[]
      • np.frompyfunc()
      • 集合转图像
  • julia集合

无边的奇迹源自简单规则的无限重复 ---- 分形之父Benoit B.Mandelbrot

分形的重要特征

  • 自相似性
  • 无标度性
  • 非线性
    在这里插入图片描述

曼德布洛特集合

  • z 0 = 0 z_0 = 0 z0=0
  • z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c

想要确定复数c是否属于曼德布洛特集合,只要将c代入上面公式,当n足够大时,如果序列没有发散,则说明c输入曼德布洛特集合。

def iter_m(c):z = cfor i in range(1, 10):z = z**2 + cprint(round(z, 3), end = '->')print('\n' + '*' * 20)
iter_m(-1)
iter_m(-0.5)
iter_m(0.5)# 输出
0->-1->0->-1->0->-1->0->-1->0->
********************
-0.25->-0.438->-0.309->-0.405->-0.336->-0.387->-0.35->-0.377->-0.358->
********************
0.75->1.062->1.629->3.153->10.444->109.567->12005.476->144131442.662->2.0773872763941816e+16->
********************
可以看到-1和0.5不收敛

从图像理解-0.5为什么收敛:
z n + 1 = z n 2 + c z_{n+1} = z_{n}^2 + c zn+1=zn2+c知道 z 1 = − 0.5 z_1 = -0.5 z1=0.5 z 1 z_1 z1要作下一步的横坐标,因此由 y = x y =x y=x找到横坐标为 z 1 z_1 z1的点,然后再在曼德布洛特的迭代函数中计算。(win11的计算器绘图不是方格,我稍微查了一下也没找到解决办法,如果有人知道怎么改,希望能留言,感谢)可以看到收敛于交点,至于-1和0.5也可以用同样的方法从图中看出来。

请添加图片描述

曼德布洛特集合有一个以证明的结论:

复平面上的曼德布洛特集合在一个半径为2的圆内

# 改进后的函数
def iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn True

图像展示

现提出想要对一个复数区域内的点进行区分是否属于曼德布洛特集合该如何做呢?
先学习两个方法

np.ogrid[]

x, y = np.ogrid[0:1:5j, -1:1:5j] # 前列后行
# 切片第三个参数如果以j结尾则是将其等分划分
# 如果没有j,只是一个数,则是以该数为间隔划分
print('x:\n', x)
print('y:\n', y)
z = x + y * 1j
print('z:\n', z)# 输出
x:[[0.  ][0.25][0.5 ][0.75][1.  ]]
y:[[-1.  -0.5  0.   0.5  1. ]]
z:[[0.  -1.j  0.  -0.5j 0.  +0.j  0.  +0.5j 0.  +1.j ][0.25-1.j  0.25-0.5j 0.25+0.j  0.25+0.5j 0.25+1.j ][0.5 -1.j  0.5 -0.5j 0.5 +0.j  0.5 +0.5j 0.5 +1.j ][0.75-1.j  0.75-0.5j 0.75+0.j  0.75+0.5j 0.75+1.j ][1.  -1.j  1.  -0.5j 1.  +0.j  1.  +0.5j 1.  +1.j ]]

np.frompyfunc()

优点类似于map的功能,但不完全相同。对于上面的iter_m3()方法只能传入一个复数,如果传入一个包含复数的数组则不可以。为了解决这个问题,使用np.frompyfunc(func, nin, nout)
其中func是自定义函数,nin是传入参数的个数,nout是传出参数的个数。

mande = np.frompyfunc(iter_m3, 1, 1)
mande(z)# 输出
array([[True, True, True, True, True],[False, True, True, True, False],[False, False, False, False, False],[False, False, False, False, False],[False, False, False, False, False]], dtype=object)

同样也可以使用map达到该功能,但是复杂一些

result = np.array(list(map(lambda row: list(map(iter_m3, row)), z)))
# 注意:对于二维数组,一层map取的是一维数组
print(result)# 输出
[[ True  True  True  True  True][False  True  True  True False][False False False False False][False False False False False][False False False False False]]

集合转图像

import numpy as np
import matplotlib.pylab as plt
from matplotlib import cmdef iter_m3(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合return Falsez = z**2 + creturn Truedef draw_set(cx, cy, d, ufunc:np.ufunc):x0, x1, y0, y1 = cx - d, cx + d, cy - d, cy + dy, x = np.ogrid[y0:y1:400j, x0:x1:400j]z = x + y * 1jplt.imshow(ufunc(z).astype(float), cmap=cm.jet, extent=[x0, x1, y0, y1])mande = np.frompyfunc(iter_m3, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

输出图像:
在这里插入图片描述

但是颜色不够鲜艳,希望每一个不同的发散点都能显示不同的颜色。

def iter_m4(c):z = cfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
mande = np.frompyfunc(iter_m4, 1, 1)
draw_set(-0.5, 0, 1.5, mande)

放大
对(0.273, 0.5921)处进行放大

x, y = 0.273, 0.5921
plt.subplot(2, 3, 1)
draw_set(-0.5, 0, 1.5, mande)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1.5), mande)

输出:
在这里插入图片描述

julia集合

迭代公式与曼德布洛特唯一区别在于 z 0 z_0 z0不是0,而是输入数据,c给定一个值,因此曼德布洛特集合只有一个,而julia集合有无数个。

def iter_j(z):c = -0.4 + 0.6jfor i in range(0, 200):if abs(z) > 2: # 迭代200次后还没有发散则说明很有可能就属于曼德布洛特集合breakz = z**2 + creturn i
julia = np.frompyfunc(iter_j, 1, 1)
draw_set(0, 0, 1.5, julia)

输出:
在这里插入图片描述
放大

x, y = 0.5754, 0.2048
plt.subplot(2, 3, 1)
draw_set(0, 0, 1.5, julia)
for i in range(2, 7):plt.subplot(2, 3, i)draw_set(x, y, 0.25**(i-1), julia)

输出:
在这里插入图片描述

http://www.hrbkazy.com/news/9925.html

相关文章:

  • 搭建网站需要多少钱网页推广怎么做
  • 企业备案的网站名称深圳seo优化外包
  • 网站开发 网站建设自媒体营销的策略和方法
  • 网站建设与管理logo沧州搜索引擎优化
  • 做的最好的网站南宁网站推广排名
  • 长沙做网站咨询公司短视频推广平台有哪些
  • 卖设备用哪个网站网络营销策略的内容
  • 买产品做企业网站还是博客南京疫情最新消息
  • 网站开发人员保密网络推广引流是做什么工作
  • 营销推广策划方案范文如何网站seo
  • 做网站运营需要具备什么能力打开一个网站
  • 高端品牌网站设计企业网站建设百度百度一下一下
  • vip解析网站怎么做的站长统计app下载
  • 局域网手机网站建设百度关键词排名手机
  • 如果用别人公司信息做网站巨量算数关键词查询
  • 动态网站后台怎么做西安seo外包
  • 做网站公司佛山自己如何制作一个网站
  • wordpress关键词连接插件上海关键词优化按天计费
  • 商城网站制作公司cpa推广接单平台
  • 在哪里申请域名短视频seo营销系统
  • 中国银行全球门户网站什么是seo
  • wordpress设定密码seo优化教程培训
  • 建设b2c商城网站定免费推广的平台都有哪些
  • 做的网站有营销效果吗seo优化方案策划书
  • 九江网站建设优化公司软文推广平台排名
  • 引导企业做网站关键词搜索引擎又称为
  • 百度站长反馈武汉seo首页优化报价
  • 佛山网站设计模板sem与seo的区别
  • 网站建设 成都完美日记网络营销策划书
  • 长沙手机网站建设公司哪家好如何免费做网站网页