当前位置: 首页 > news >正文

网站不需要什么备案网络平台怎么创建

网站不需要什么备案,网络平台怎么创建,网络平台怎么投诉,运动网站建设中文版 DPO paper: https://arxiv.org/pdf/2305.18290 DPO 算法详解:从理论到实现 1. 什么是 DPO? DPO(Direct Preference Optimization)是一种直接基于人类偏好进行优化的算法,旨在解决从人类偏好数据中训练出表现…

中文版

DPO paper: https://arxiv.org/pdf/2305.18290

DPO 算法详解:从理论到实现

1. 什么是 DPO?

DPO(Direct Preference Optimization)是一种直接基于人类偏好进行优化的算法,旨在解决从人类偏好数据中训练出表现更优的语言模型的问题。它与传统的基于奖励建模的强化学习方法(如 PPO)不同,通过引入一种基于 Bradley-Terry 模型的参数化方法,将人类偏好概率直接与语言模型的输出概率相关联,从而避免了明确训练奖励模型的过程。


2. DPO 解决什么问题?

在 RLHF(Reinforcement Learning with Human Feedback)框架中,通常需要训练一个奖励模型来对语言模型的生成进行打分。然而,训练奖励模型和使用强化学习优化策略模型(如 PPO)通常会引入一些复杂性和不稳定性:

  • 奖励模型可能过拟合或偏离人类真实偏好。
  • 使用强化学习优化策略模型需要平衡探索和收敛,容易引发 KL 散度爆炸等问题。

DPO 提供了一种更直接的优化方式,通过重新参数化,将偏好建模直接嵌入语言模型优化中,从而绕过奖励建模,简化了训练流程。


3. DPO 的核心公式

DPO 的核心思想是通过 Bradley-Terry 偏好模型,将偏好概率建模为语言模型输出概率的对数比值,并引入温度参数 ( β \beta β ) 来控制 KL 惩罚强度。

核心公式

人类偏好概率建模公式如下:

p ∗ ( y 1 ≻ y 2 ∣ x ) = 1 1 + exp ⁡ ( β log ⁡ π ∗ ( y 2 ∣ x ) π ref ( y 2 ∣ x ) − β log ⁡ π ∗ ( y 1 ∣ x ) π ref ( y 1 ∣ x ) ) p^*(y_1 \succ y_2 | x) = \frac{1}{1 + \exp\left(\beta \log \frac{\pi^*(y_2|x)}{\pi_{\text{ref}}(y_2|x)} - \beta \log \frac{\pi^*(y_1|x)}{\pi_{\text{ref}}(y_1|x)}\right)} p(y1y2x)=1+exp(βlogπref(y2x)π(y2x)βlogπref(y1x)π(y1x))1

在实际中,我们通过最大化以下目标函数来优化参数化的策略模型 ( π θ \pi_\theta πθ ):

L DPO ( π θ ; π ref ) = − E ( x , y w , y l ) ∼ D [ log ⁡ σ ( β log ⁡ π θ ( y w ∣ x ) π ref ( y w ∣ x ) − β log ⁡ π θ ( y l ∣ x ) π ref ( y l ∣ x ) ) ] L_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = - \mathbb{E}_{(x, y_w, y_l) \sim D}\left[ \log \sigma\left(\beta \log \frac{\pi_\theta(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_\theta(y_l | x)}{\pi_{\text{ref}}(y_l | x)}\right) \right] LDPO(πθ;πref)=E(x,yw,yl)D[logσ(βlogπref(ywx)πθ(ywx)βlogπref(ylx)πθ(ylx))]

其中:

  • ( σ \sigma σ ) 是 Sigmoid 函数。
  • ( y w y_w yw ) 和 ( y l y_l yl ) 分别是人类标注的偏好和非偏好样本。

通过最大化该目标函数,策略模型会更倾向于生成被人类偏好的输出,同时抑制被人类不喜欢的输出。


4. 如何理解 DPO?

DPO 的优化过程可以从以下几个方面理解:

  1. 奖励重新参数化
    通过将奖励模型嵌入策略模型输出的对数比值中,避免了显式训练奖励模型的过程。
    隐式奖励定义为:
    r ^ θ ( x , y ) = β log ⁡ π θ ( y ∣ x ) π ref ( y ∣ x ) \hat{r}_\theta(x, y) = \beta \log \frac{\pi_\theta(y | x)}{\pi_{\text{ref}}(y | x)} r^θ(x,y)=βlogπref(yx)πθ(yx)

  2. 梯度优化
    DPO 的梯度公式为:
    ∇ θ L DPO = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) ) ⋅ ( ∇ θ log ⁡ π θ ( y w ∣ x ) − ∇ θ log ⁡ π θ ( y l ∣ x ) ) ] \nabla_\theta L_{\text{DPO}} = -\beta \mathbb{E}_{(x, y_w, y_l) \sim D}\left[ \sigma(\hat{r}_\theta(x, y_l) - \hat{r}_\theta(x, y_w)) \cdot (\nabla_\theta \log \pi_\theta(y_w | x) - \nabla_\theta \log \pi_\theta(y_l | x)) \right] θLDPO=βE(x,yw,yl)D[σ(r^θ(x,yl)r^θ(x,yw))(θlogπθ(ywx)θlogπθ(ylx))]

    直观上,这意味着模型会:

    • 提高 ( y w y_w yw ) 的生成概率。
    • 降低 ( y l y_l yl ) 的生成概率。
    • 偏差较大的样本(即 ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) \hat{r}_\theta(x, y_l) - \hat{r}_\theta(x, y_w) r^θ(x,yl)r^θ(x,yw) ) 较大时)权重更高。
  3. 温度参数 ( β \beta β )
    ( β \beta β ) 控制 KL 惩罚的强度,平衡策略模型与参考模型之间的分布差异。


5. 示例解析

假设我们有一个 Prompt,生成了两个候选回复 ( y 1 y_1 y1 ) 和 ( y 2 y_2 y2 ),并根据人类偏好得到以下信息:

  • ( y 1 y_1 y1 ) 被偏好 (( y w = y 1 y_w = y_1 yw=y1 )),( y 2 y_2 y2 ) 被不偏好 (( y l = y 2 y_l = y_2 yl=y2 ))。
  • 模型的输出概率为:
    π θ ( y 1 ∣ x ) = 0.6 , π θ ( y 2 ∣ x ) = 0.4 , π ref ( y 1 ∣ x ) = 0.5 , π ref ( y 2 ∣ x ) = 0.5 \pi_\theta(y_1|x) = 0.6, \quad \pi_\theta(y_2|x) = 0.4, \quad \pi_{\text{ref}}(y_1|x) = 0.5, \quad \pi_{\text{ref}}(y_2|x) = 0.5 πθ(y1x)=0.6,πθ(y2x)=0.4,πref(y1x)=0.5,πref(y2x)=0.5

计算隐式奖励:
r ^ θ ( x , y 1 ) = β log ⁡ π θ ( y 1 ∣ x ) π ref ( y 1 ∣ x ) = β log ⁡ 0.6 0.5 \hat{r}_\theta(x, y_1) = \beta \log \frac{\pi_\theta(y_1|x)}{\pi_{\text{ref}}(y_1|x)} = \beta \log \frac{0.6}{0.5} r^θ(x,y1)=βlogπref(y1x)πθ(y1x)=βlog0.50.6
r ^ θ ( x , y 2 ) = β log ⁡ π θ ( y 2 ∣ x ) π ref ( y 2 ∣ x ) = β log ⁡ 0.4 0.5 \hat{r}_\theta(x, y_2) = \beta \log \frac{\pi_\theta(y_2|x)}{\pi_{\text{ref}}(y_2|x)} = \beta \log \frac{0.4}{0.5} r^θ(x,y2)=βlogπref(y2x)πθ(y2x)=βlog0.50.4

偏好模型的概率:
p ∗ ( y 1 ≻ y 2 ∣ x ) = 1 1 + exp ⁡ ( r ^ θ ( x , y 2 ) − r ^ θ ( x , y 1 ) ) p^*(y_1 \succ y_2 | x) = \frac{1}{1 + \exp\left(\hat{r}_\theta(x, y_2) - \hat{r}_\theta(x, y_1)\right)} p(y1y2x)=1+exp(r^θ(x,y2)r^θ(x,y1))1

优化目标是让模型进一步增加 ( y 1 y_1 y1 ) 的概率,同时减少 ( y 2 y_2 y2 ) 的概率。


6. DPO 和 PPO 的区别
特性DPOPPO
核心思想直接基于人类偏好优化语言模型基于奖励信号,通过强化学习优化策略
是否需要奖励模型不需要需要
优化目标最大化偏好概率最大化累计奖励
实现复杂度较低较高
稳定性较高可能出现 KL 爆炸等问题

关于KL爆炸问题,可以参考笔者的另一篇博客:PPO 可能出现 KL 爆炸等问题的详细分析(KL Explosions in PPO): 中英双语


7. 总结

DPO 提供了一种高效、稳定的语言模型优化方法,适合在大规模人类偏好数据上训练更优的模型。相比于传统的 RLHF 方法,DPO 不仅简化了实现过程,还具备更强的理论一致性和实践可靠性。

Direct Preference Optimization (DPO): A Comprehensive Overview

What Problem Does DPO Solve?

Direct Preference Optimization (DPO) addresses the limitations of Reinforcement Learning with Human Feedback (RLHF) by offering a simpler and more direct optimization method. RLHF traditionally uses reward models and Proximal Policy Optimization (PPO) to align language models with human preferences. However, PPO introduces complexity due to the need for dynamic reward modeling and reinforcement learning updates, which involve policy rollouts and value function estimation.

DPO simplifies this process by directly optimizing the likelihood of human-preferred responses relative to dispreferred ones without requiring an explicit reward model or reinforcement learning steps. Instead, it reformulates the optimization as a maximum likelihood estimation (MLE) problem.

Core Formula of DPO

The central idea of DPO is to use a Bradley-Terry preference model to define probabilities for human preferences based on the log-probabilities output by the model.

Given:

  • ( π θ \pi_\theta πθ ): The policy (current model being optimized)
  • ( π r e f \pi_{ref} πref ): The reference policy (pre-trained model used as a baseline)
  • ( y w y_w yw ): Preferred response
  • ( y l y_l yl ): Dispreferred response
  • ( β \beta β ): Temperature hyperparameter controlling regularization strength

DPO models human preferences using the log-ratio of probabilities between the preferred and dispreferred outputs.

The loss function is:
L D P O ( π θ ; π r e f ) = − E ( x , y w , y l ) ∼ D [ log ⁡ σ ( β ( log ⁡ π θ ( y w ∣ x ) π r e f ( y w ∣ x ) − log ⁡ π θ ( y l ∣ x ) π r e f ( y l ∣ x ) ) ) ] L_{DPO}(\pi_\theta; \pi_{ref}) = -E_{(x, y_w, y_l) \sim D} \left[ \log \sigma \left( \beta \left( \log \frac{\pi_\theta(y_w | x)}{\pi_{ref}(y_w | x)} - \log \frac{\pi_\theta(y_l | x)}{\pi_{ref}(y_l | x)} \right) \right) \right] LDPO(πθ;πref)=E(x,yw,yl)D[logσ(β(logπref(ywx)πθ(ywx)logπref(ylx)πθ(ylx)))]

Key Points in the Formula:
  1. The loss directly optimizes the relative log-probabilities of preferred (( y w y_w yw)) versus dispreferred (( y l y_l yl)) responses.
  2. ( β \beta β ) controls the strength of KL-regularization between the policy and the reference model.
  3. ( σ ( ⋅ ) \sigma(\cdot) σ() ) represents the sigmoid function, ensuring the preference probabilities are modeled effectively.
  4. It eliminates the need for explicit reward modeling, treating model preferences as implicit rewards.

Understanding the Formula

1. Implicit Reward Calculation

DPO implicitly defines a reward function based on the policy and reference model:

r ^ θ ( x , y ) = β log ⁡ π θ ( y ∣ x ) π r e f ( y ∣ x ) \hat{r}_\theta(x, y) = \beta \log \frac{\pi_\theta(y | x)}{\pi_{ref}(y | x)} r^θ(x,y)=βlogπref(yx)πθ(yx)

This means the reward is proportional to the log-likelihood ratio between the current and reference models.

2. Optimization Objective

DPO optimizes the probability of preferred completions being ranked higher than dispreferred completions.

Specifically, it increases the likelihood of preferred completions (( y w y_w yw)) while decreasing the likelihood of dispreferred ones (( y l y_l yl)).

The gradient of the loss is:
∇ θ L D P O = − β E ( x , y w , y l ) ∼ D [ σ ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) ) ( ∇ θ log ⁡ π θ ( y w ∣ x ) − ∇ θ log ⁡ π θ ( y l ∣ x ) ) ] \nabla_\theta L_{DPO} = -\beta E_{(x, y_w, y_l) \sim D}\left[ \sigma(\hat{r}_\theta(x, y_l) - \hat{r}_\theta(x, y_w)) \left( \nabla_\theta \log \pi_\theta(y_w | x) - \nabla_\theta \log \pi_\theta(y_l | x) \right) \right] θLDPO=βE(x,yw,yl)D[σ(r^θ(x,yl)r^θ(x,yw))(θlogπθ(ywx)θlogπθ(ylx))]

3. Weighting by Confidence

The weighting term ( σ ( r ^ θ ( x , y l ) − r ^ θ ( x , y w ) ) \sigma(\hat{r}_\theta(x, y_l) - \hat{r}_\theta(x, y_w)) σ(r^θ(x,yl)r^θ(x,yw)) ) penalizes errors when the model incorrectly assigns higher rewards to dispreferred completions. This ensures that updates focus on examples where the model is most uncertain or wrong, leading to more effective training.


Example Analysis

Suppose we have the following preferences for prompts:

Input Prompt:
“What is the capital of France?”

Completions:

  • ( y w y_w yw ): “The capital of France is Paris.” (Preferred)
  • ( y l y_l yl ): “The capital of France is London.” (Dispreferred)

The log-probabilities from the current model (( π θ \pi_\theta πθ )) and reference model (( π r e f \pi_{ref} πref )) are:

  • ( π θ ( y w ∣ x ) = − 0.2 \pi_\theta(y_w | x) = -0.2 πθ(ywx)=0.2 ), ( π θ ( y l ∣ x ) = − 0.8 \pi_\theta(y_l | x) = -0.8 πθ(ylx)=0.8 )
  • ( π r e f ( y w ∣ x ) = − 0.3 \pi_{ref}(y_w | x) = -0.3 πref(ywx)=0.3 ), ( π r e f ( y l ∣ x ) = − 0.7 \pi_{ref}(y_l | x) = -0.7 πref(ylx)=0.7 )

Using the DPO loss formula:

  1. Calculate the log-probability ratios:
    r w = log ⁡ π θ ( y w ∣ x ) π r e f ( y w ∣ x ) = log ⁡ ( − 0.2 ) − log ⁡ ( − 0.3 ) = − 0.17 r_w = \log \frac{\pi_\theta(y_w | x)}{\pi_{ref}(y_w | x)} = \log(-0.2) - \log(-0.3) = -0.17 rw=logπref(ywx)πθ(ywx)=log(0.2)log(0.3)=0.17
    r l = log ⁡ π θ ( y l ∣ x ) π r e f ( y l ∣ x ) = log ⁡ ( − 0.8 ) − log ⁡ ( − 0.7 ) = 0.06 r_l = \log \frac{\pi_\theta(y_l | x)}{\pi_{ref}(y_l | x)} = \log(-0.8) - \log(-0.7) = 0.06 rl=logπref(ylx)πθ(ylx)=log(0.8)log(0.7)=0.06

  2. Compute the preference difference:
    Δ r = β ( r w − r l ) = β ( − 0.17 − 0.06 ) = β ( − 0.23 ) \Delta r = \beta (r_w - r_l) = \beta(-0.17-0.06)=\beta(-0.23) Δr=β(rwrl)=β(0.170.06)=β(0.23)

  3. Final loss:
    L = − log ⁡ σ ( Δ r ) = − log ⁡ σ ( − 0.23 β ) L = -\log \sigma(\Delta r) = -\log \sigma(-0.23\beta) L=logσ(Δr)=logσ(0.23β)

The optimization encourages increasing the likelihood of ( y w y_w yw ) while reducing ( y l y_l yl ).


DPO vs PPO: Key Differences

AspectDPOPPO
Reward ModelImplicitly modeled via log-probabilities.Requires an explicit, learned reward model.
Algorithm TypeMaximum Likelihood Estimation (MLE).Reinforcement Learning with Policy Gradients.
Training ComplexitySimpler and requires fewer hyperparameters.More complex with value function updates and clipping mechanisms.
StabilityMore stable due to direct optimization.Requires careful tuning to avoid divergence.
Data RequirementRelies on preference data directly.Requires preference data and rollout data for updates.
KL RegularizationControlled by parameter ( β \beta β ).Controlled by PPO clipping.

Why is DPO Effective?

  1. Simplified Training Process: No need for reward model training or complex PPO pipelines.
  2. Implicit Reward Modeling: Avoids separate reward models and leverages pre-trained probabilities.
  3. Theoretical Guarantees: Based on Bradley-Terry models, ensuring consistency under reasonable assumptions.
  4. Practical Applicability: Compatible with public preference datasets without requiring new data collection.

Implementation Example

import torch
import torch.nn.functional as Fdef dpo_loss(pi_logps, ref_logps, yw_idxs, yl_idxs, beta):pi_yw_logps, pi_yl_logps = pi_logps[yw_idxs], pi_logps[yl_idxs]ref_yw_logps, ref_yl_logps = ref_logps[yw_idxs], ref_logps[yl_idxs]pi_logratios = pi_yw_logps - pi_yl_logpsref_logratios = ref_yw_logps - ref_yl_logpslosses = -F.logsigmoid(beta * (pi_logratios - ref_logratios))rewards = beta * (pi_logps - ref_logps).detach()return losses, rewards

Conclusion

DPO offers a lightweight alternative to PPO for preference optimization by directly leveraging preference data without relying on complex reinforcement learning frameworks. It is particularly effective for aligning language models with human preferences and offers theoretical guarantees grounded in Bradley-Terry models. Given its simplicity and effectiveness, DPO is increasingly used for tasks requiring preference-based fine-tuning of large language models.

后记

2024年12月26日20点52分于上海,在GPT4o大模型辅助下完成。

http://www.hrbkazy.com/news/16082.html

相关文章:

  • 手机网站制作哪家好百度推广app下载官方
  • 如何建设网站开鲁seo服务
  • 网站群cms长沙网动网络科技有限公司
  • php商城品牌seo如何优化
  • 一万元做网站百度推广的步骤
  • 模板建站和定制建站个人如何优化网站有哪些方法
  • 500网站建设英文seo兼职
  • 西安免费网站建设百度收录提交入口地址
  • 烟台免费做网站什么样的人适合做营销
  • 深圳哪家制作网站好seo视频教学网站
  • 南宁网站开发推广app大全
  • 专门做网站的软件网店推广方法有哪些
  • 怎么做百度网盘链接网站山西seo排名厂家
  • 长春建网站公司北京seo优化外包
  • 用那种语言做网站比较好百度快照没有了用什么代替了
  • 网站建设的对比分析杭州网站推广大全
  • 如果网站曾被挂木马自媒体平台排名前十
  • 能打开各种网站的浏览器appit培训
  • 中国联通网站备案系统如何推广品牌
  • 镇江百度送网站简单的网页设计作品
  • 郑州制作网站价格百度搜索平台
  • 做网站主播要什么条件推广手段和渠道有哪些
  • 推广广告赚佣金seo推广话术
  • 朝阳市做网站的公司网络营销seo是什么意思
  • 南昌网站建设志博友链价格
  • 邮件网站排名抖音推广方式有哪些
  • ps联盟网站怎么搞自己的网站
  • 网站通常用什么编程做合肥网站建设公司
  • 如何做b2b网站最近新闻热点国家大事
  • 做服装网站要那些照片廊坊seo网络推广