当前位置: 首页 > news >正文

织梦做的网站如何去掉index百度公司销售卖什么的

织梦做的网站如何去掉index,百度公司销售卖什么的,适合个人做的外贸平台,那些网站能够做推广目录 1、矩阵的构造和初始化操作 2、矩阵的算术运算 3、矩阵的分解和求解 4、矩阵的变换 5、矩阵的访问和修改 6、矩阵遍历 7、线性方程组求解 8、其他操作 Eigen库是一个高级的C库,用于线性代数,矩阵和向量运算,数值分析和相关的数学…

目录

1、矩阵的构造和初始化操作

2、矩阵的算术运算

3、矩阵的分解和求解

4、矩阵的变换

5、矩阵的访问和修改

6、矩阵遍历

7、线性方程组求解

8、其他操作


Eigen库是一个高级的C++库,用于线性代数,矩阵和向量运算,数值分析和相关的数学运算。这个库提供了大量的矩阵操作功能。

1、矩阵的构造和初始化操作

Eigen::Matrix3f A; // 创建一个3x3的双精度浮点型矩阵A << 1, 2, 3,  4, 5, 6,  7, 8, 9;cout<<"3X3 float: \n"<<A<<endl;Eigen::MatrixXf m = Eigen::MatrixXf::Identity(3, 3); // 创建一个3x3的单位矩阵cout<<"3X3 identity: \n"<<m<<endl;Eigen::MatrixXf mf(3, 3); // 使用构造函数初始化,默认初始化为0 Eigen::MatrixXi mi(3, 3); // 创建一个3x3的整型矩阵,默认初始化为0cout<<"3X3 mf: \n"<<mf<<endl;cout<<"3X3 mi: \n"<<mi<<endl;Eigen::MatrixXf z = Eigen::MatrixXf::Zero(3, 3); // 创建一个3x3的全0矩阵Eigen::MatrixXi n = Eigen::MatrixXi::Ones(3, 3); // 创建一个3x3的全1矩阵cout<<"3X3 Zero: \n"<<z<<endl;cout<<"3X3 Ones: \n"<<n<<endl;Eigen::MatrixXf r = Eigen::MatrixXf::Random(3, 3); // 创建一个3x3的随机矩阵cout<<"3X3 random: \n"<<r<<endl;float data[9] = {1, 2, 3, 4, 5, 6, 7, 8, 9};Eigen::Map<Eigen::MatrixXf> mp(data, 3, 3); // 将data数组映射为一个3x3的矩阵cout<<"3X3 map mp: \n"<<mp<<endl;Eigen::MatrixXf m_i(3, 3);m_i = (Eigen::MatrixXf(3, 3)<<1, 2, 3, 4, 5, 6, 7, 8, 9).finished(); //对于动态大小的矩阵,可以使用逗号初始化器,但需要在初始化时指定大小cout<<"initializer m_i: \n"<<m_i<<endl;Eigen::MatrixXf m_c = m_i;cout<<"copy constructor m_c : \n"<<m_c<<endl;

2、矩阵的算术运算

Eigen::MatrixXf m1 = Eigen::MatrixXf::Identity(3, 3);Eigen::MatrixXf m2 = Eigen::MatrixXf::Identity(3, 3);Eigen::Matrix3f sum = m1 + m2; // 矩阵加法 cout<<"sum : \n"<<sum<<endl;Eigen::MatrixXf diff = m1 + m2; // 矩阵减法 cout<<"diff : \n"<<diff<<endl;Eigen::MatrixXf scaled = m1 * 2.0f; // 矩阵与标量的乘法 cout<<"scaled : \n"<<scaled<<endl;Eigen::MatrixXf product = m1 * m2.transpose(); // 矩阵乘法cout<<"product : \n"<<product<<endl;// 矩阵加法
Eigen::Matrix3f C = A + A;// 矩阵乘法
Eigen::Matrix3f D = A * A.transpose();// 向量加法
Eigen::Vector4f e = b + b;// 点积(内积)
float dotProduct = b.dot(b);// 转置
std::cout << "Transpose of A:\n" << A.transpose() << std::endl;// 访问元素
std::cout << "Element (1, 1) of A: " << A(1, 1) << std::endl;

3、矩阵的分解和求解

Eigen::MatrixXf m1 = Eigen::Matrix3f::Random();cout << "original matrix:\n" << m1 << endl;// 对矩阵进行特征值分解Eigen::EigenSolver<Eigen::Matrix3f> es(m1);cout << "eigenvalues:\n" << es.eigenvalues() << endl; cout << "eigenvectors:\n" << es.eigenvectors() << endl; // 假设我们有一个线性方程组 Ax = bEigen::Vector3f b(1, 2, 3);cout << "vector b:\n" << b << endl;// 使用列主元QR分解求解线性方程组Eigen::Vector3f x = m1.colPivHouseholderQr().solve(b);cout << "Solution x:\n" << x << endl;

4、矩阵的变换

Eigen::MatrixXf m1 = Eigen::Matrix4f::Random();cout << "original matrix:\n" << m1 << endl;// 获取矩阵的转置 Eigen::Matrix4f transposed = m1.transpose();cout << "transposed:\n" << transposed << endl; // 获取矩阵的对角线元素Eigen::Vector4f diagonal = m1.diagonal();cout << "diagonal:\n" << diagonal << endl; // 获取矩阵的逆(注意:需要先检查矩阵是否可逆)if(m1.determinant() != 0) // 使用行列式检查是否可逆{// 求逆矩阵Eigen::Matrix4f inv_m = m1.inverse();cout << "inverse:\n" << inv_m << endl; // 验证逆矩阵的正确性:m * inv_m 应该接近单位矩阵Eigen::MatrixXf identity_check = m1 * inv_m;cout << "identity check:\n" << identity_check << endl; }else {  cerr << "Matrix is singular and cannot be inverted." << endl;  } 

5、矩阵的访问和修改

 Eigen::MatrixXf m1 = Eigen::Matrix4f::Random();cout << "original matrix:\n" << m1 << endl;// 取出前3行和前3列的子矩阵Eigen::Matrix3f sub_matrix = m1.block(0, 0, 3, 3);cout << "sub_matrix:\n" << sub_matrix << endl;// 修改矩阵的元素  m1(1, 2) = 10; // 将第2行第3列的元素设置为10// 访问矩阵的元素cout << "Element at (1, 2): " << m1(1, 2) << endl;// 访问矩阵的第2行  Eigen::Vector4f row = m1.row(1);cout << "row 2: " << row << std::endl;// 访问矩阵的第2列  Eigen::Vector4f col = m1.col(1);cout << "col 2: " << col << std::endl;Eigen::MatrixXf m2 = Eigen::Matrix3f::Random();cout << "original matrix:\n" << m2 << endl;// 创建一个4x4的矩阵,并初始化 Eigen::Matrix4f m4_4= Eigen::Matrix4f::Zero();// 将3x3矩阵赋值给4x4矩阵的前3行和前3列  m4_4.block(0, 0, 3, 3) = m2;cout << "4x4 matrix with 3x3 block assigned:\n" << m4_4 << endl;
//块操作
// 提取矩阵的第二列
Eigen::Vector3f column = A.col(1);// 提取矩阵的前两行
Eigen::Matrix2f topRows = A.topRows(2);

6、矩阵遍历

3.1 使用迭代器遍历和打印#include <iostream>
#include <Eigen/Dense>int main() {Eigen::MatrixXd mat(3, 4);mat << 1, 2, 3, 4,5, 6, 7, 8,9, 0, 1, 2;// 遍历并打印矩阵的每一行for (int row = 0; row < mat.rows(); ++row) {for (Eigen::MatrixXd::RowIterator it = mat.row(row).begin(); it != mat.row(row).end(); ++it) {std::cout << *it << ' ';}std::cout << '\n';}Eigen::VectorXd vec(5);vec << 3, 6, 9, 12, 15;// 遍历并打印向量的所有元素for (Eigen::VectorXd::Iterator it = vec.begin(); it != vec.end(); ++it) {std::cout << *it << ' ';}std::cout << '\n';return 0;
}3.2 直接访问元素并打印
#include <iostream>
#include <Eigen/Dense>int main() {Eigen::MatrixXd mat(3, 4);mat << 1, 2, 3, 4,5, 6, 7, 8,9, 0, 1, 2;// 遍历并打印矩阵的每一行for (int row = 0; row < mat.rows(); ++row) {for (int col = 0; col < mat.cols(); ++col) {std::cout << mat(row, col) << ' ';}std::cout << '\n';}Eigen::VectorXd vec(5);vec << 3, 6, 9, 12, 15;// 遍历并打印向量的所有元素for (int i = 0; i < vec.size(); ++i) {std::cout << vec(i) << ' ';}std::cout << '\n';return 0;
}

7、线性方程组求解

// 假设A是已知的系数矩阵,b是已知的右侧向量
Eigen::VectorXd x;
Eigen::MatrixXd A(3, 3);
Eigen::VectorXd b(3);// ... 初始化A和b ...// 使用LLT分解求解Ax=b
Eigen::LLT<Eigen::MatrixXd> llt(A);
if (llt.info() == Eigen::Success) {x = llt.solve(b);
} else {std::cerr << "LLT decomposition failed!" << std::endl;
}// 输出解
std::cout << "Solution: " << x << std::endl;

8、其他操作

Eigen::Matrix3f m1; // 创建一个3x3的双精度浮点型矩阵m1 << 1, 2, 3,  4, 5, 6,  7, 8, 9;// 计算矩阵的Frobenius范数float norm = m1.norm();cout << "norm of the matrix: " << norm << endl;Eigen::Matrix3f m2; // 创建一个3x3的双精度浮点型矩阵m2 << 1, 2, 3,  4, 5, 6,  7, 8, 9.0001f;// 检查两个矩阵是否近似相等(这里使用1e-5作为精度阈值)bool are_approx = m1.isApprox(m2, 1e-5);cout << "are m1 and m2 approximately equal? " << (are_approx ? "Yes" : "No") << endl;

http://www.hrbkazy.com/news/40850.html

相关文章:

  • 做网站 指导seo排名软件
  • seo站长博客参考网是合法网站吗?
  • 做电商网站用什么语言360推广怎么收费
  • 福州企业高端网站建设制作哪家好危机舆情公关公司
  • 去年做哪些网站能致富5151app是交友软件么
  • 建站的注意事项广州seo和网络推广
  • 构建动态网站设计的理解什么是搜索关键词
  • 网站在线问答怎么做百度入驻绍兴
  • ui做的好的公司网站如何建网站赚钱
  • 北京 网站设计公司网页seo
  • 做奢侈品的网站重庆seo杨洋
  • shopify独立站怎么做营销策划方案模板范文
  • 网站建设常见的问题抖音关键词查询工具
  • 专门做加盟的网站重庆企业网站排名优化
  • 哈尔滨网页设计招聘优化大师tv版
  • 网站建设北京公司上海网络推广团队
  • 网站备案是一年一次吗有域名后如何建网站
  • 外国做美食视频网站网站推广方式
  • 做素材类的网站赚钱吗关键词歌词任然
  • 如何用织梦程序制作多个页面网站网络营销技巧培训
  • 杭州的网站建设公司哪家好网站推广的常用方法有哪些
  • 图书馆网站建设调查问卷网站优化排名易下拉软件
  • 现代农业园网站建设方案2022最近的新闻大事10条
  • 广西南宁网站设计自媒体怎么赚钱
  • 做银行设计有好的网站参考吗企业新闻稿发布平台
  • 成都 网站备案 幕布拍摄点福建搜索引擎优化
  • 做网站和微信公众号如何招生如何设计企业网站
  • 微网站开发需求宁波seo推广优化哪家强
  • 彩票网站做维护是什么网站推广技巧
  • 网站实现多模板切换网站快速上排名方法